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Mapping Block-Level Urban Areas for All Chinese
Cities

Ying Long,*,y Yao Shen,z and Xiaobin Jin{

*Beijing Institute of City Planning
yBeijing Key Lab of Capital Spatial Planning and Studies

zSpace Syntax Laboratory, Bartlett School of Architecture, University College London
{School of Geographic and Oceanographic Sciences, Nanjing University

As a vital indicator for measuring urban development, urban areas are expected to be identified explicitly and
conveniently with widely available data sets, thereby benefiting planning decisions and relevant urban studies.
Existing approaches to identifying urban areas are normally based on midresolution sensing data sets, low-
resolution socioeconomic information (e.g., population density) in space (e.g., cells with several square
kilometers or even larger towns or wards). Yet, few of these approaches pay attention to defining urban areas
with high-resolution microdata for large areas by incorporating morphological and functional characteristics.
This article investigates an automated framework to delineate urban areas at the block level, using increasingly
available ordnance surveys for generating all blocks (or geounits) and ubiquitous points of interest (POIs) for
inferring density of each block. A vector cellular automata model was adopted for identifying urban blocks
from all generated blocks, taking into account density, neighborhood condition, and other spatial variables of
each block. We applied this approach for mapping urban areas of all 654 Chinese cities and compared them
with those interpreted from midresolution remote sensing images and inferred by population density and road
intersections. Our proposed framework is proven to be more straightforward, time-saving, and fine-scaled com-
pared with other existing ones. It asserts the need for consistency, efficiency, and availability in defining urban
areas with consideration of omnipresent spatial and functional factors across cities. Key Words: China, points of
interest (POIs), road network, urban block, vector cellular automata.

城市地区由于作为评估城市发展的生动指标, 因而被期待能够以广泛可及的数据集明确且便利地进行
指认, 藉此加惠规划决策和相关的城市研究。指认城市地区的既有方法, 一般是根据中度辨识率的遥测
数据集、空间中(例如具有数平方公里的区块, 甚至是更大的乡镇或行政区) 低度辨识率的社会经济信
息(例如人口密度)。但这些方法鲜少关注透过纳入形态与功能之特徵, 以高度辨识率的微观数据为大型
区域界定城市区域。本文探讨自动架构以描绘街廓层级的城市地区, 使用逐渐可及的地形测量以生产
所有街廓(或地理单位) 与普遍存在的兴趣点 (POIs) 来推断各街廓的密度。本文採用向量细胞自动机
模型, 从所有生成的街廓中指认城市街廓, 并将各街廓的密度、邻里条件与其他空间变异纳入考量。我
们将此方法应用于绘製中国共六百五十四座城市的城市地区地图, 并将其与从中度辨识率的遥测影
像、以及从人口密度与道路交口推断的地区进行比较。与其他既有的方法相较之下, 我们所提出的架
构证实更为直接、省时、且尺度精密。该架构主张界定城市地区时必须具有一致性、效率与可及性,
并考量广佈各城市的无所不在的空间与功能因素。 关键词： 中国, 兴趣点 (POIs), 路网, 城市街廓, 向
量细胞自动机。

Como indicador vital para medir el desarrollo urbano, se espera que las �areas urbanas sean identificadas
expl�ıcita y convenientemente con conjuntos de datos ampliamente disponibles, fortaleciendo as�ı las decisiones
de planificaci�on y los estudios urbanos relevantes. Los enfoques existentes para identificar las �areas urbanas nor-
malmente se basan en conjuntos de datos de sensores a resoluci�on intermedia, informaci�on socioecon�omica de
baja resoluci�on (e.g., densidad de poblaci�on) en el espacio (e.g., celdas de varios kil�ometros cuadrados o incluso
pueblos m�as grandes o distritos). No obstante, pocos de estos enfoques le prestan atenci�on a definir las �areas
urbanas con datos micro de alta resoluci�on para �areas grandes, incorporando caracter�ısticas morfol�ogicas y fun-
cionales. Este art�ıculo investiga un marco autom�atico para delinear �areas urbanas a nivel de manzanas o cuad-
ras, usando los cada vez m�as comunes servicios de cartograf�ıa para generar todas las manzanas (o geounidades) y
ubicuos punto de inter�es (POIs) para inferir la densidad de cada manzana. Se adopt�o un modelo vector cellular
aut�omata para identificar manzanas urbanas a partir de todas las manzanas generadas, tomando en cuenta la
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densidad, la condici�on del vecindario y otras variables espaciales de cada manzana. Aplicamos este enfoque para
cartografiar las �areas urbanas de todas las 654 ciudades chinas, y las comparamos con las interpretadas de
im�agenes de percepci�on remota a resoluciones intermedias y deducidas de la densidad de poblaci�on y las inter-
secciones de carreteras. El esquema que proponemos es probado como m�as directo, econ�omico en tiempo y de
escala fina en comparaci�on con otros disponibles. Este esquema reivindica la necesidad de consistencia, eficien-
cia y disponibilidad para definir �areas urbanas con la consideraci�on de los factores espaciales y funcionales pre-
sentes por doquier a trav�es de las ciudades. Palabras clave: China, puntos de inter�es, red de carreteras, manzana o
cuadra urbana, modelo vector celular aut�omata.

A
universal difficulty for urban studies is how to
properly define a city (Zipf 1949; Krugman
1996; Batty 2006). Urban areas play a strong

role in representing urban spatial development for
planning decisions, management, and urban studies.
They not only illustrate spatial patterns, such as the
development levels and scales of the built environ-
ment, but also reveal socioeconomic unevenness
within built-up areas, thereby representing how a city
evolves in a complex manner (Batty 2012).

Conventional methods of capturing the borders of a
built-up area from the top down have been applied in
major cities around the world, mainly relying on mid-
resolution sensing data sets or socioeconomic distribu-
tions (e.g., population density) associated with low-
resolution settings (e.g., cells with several square
kilometers or even larger towns or wards). Although
there is growing evidence that more accurate mapping
results of urban areas can be generated when following
the progress of remote sensing technologies and avail-
ability of census data, the applicability of these map-
ping approaches has been debated. First, such methods
cannot be applied to most cities in developing coun-
tries due to lack of the necessary data or fine digital
equipment (Long and Liu 2013). Moreover, these
existing methods still require multiple steps according
to unique conditions if a fine-scaled result is expected.
Furthermore, these existing approaches seem to isolate
the spatial characteristics from the functional ones;
therefore, the real urban activities seem to be absent
in capturing the urban areas by existing methods.

In the past thirty years, cellular automata (CA) has
increasingly attracted attention in understanding the
growth of urban areas, providing a perspective to simu-
late urban change from the bottom up. By using the
CA model, mapping of urban areas can successfully
simulate the continuity of urban areas based on spatial
proximity and allow for modeling the interaction
between urban lands defined by urban activities. Fur-
thermore, vector cellular automata (VCA) is able to
use the defined urban blocks as basic cells during the
simulation process; hence, the results of urban areas

will provide the same spatial units adopted in urban
planning and real practice. In other words, the adopted
unit in the VCA model best matches the applied com-
ponent in Chinese planning. Besides, the fine-scaled
data sets of road networks and points of interest
(POIs) covering all geographic areas in China secure
the consistency of generative resolutions of urban
blocks among all Chinese cities through the proposed
VCA model. Thus, supported by the ubiquitous data,
mapping the urban areas of a VCA model can provide
an understanding of the urban usage of space in reality
instead of a virtual environment.

This study is a manual for making a “block-up”
understanding of urban areas for all Chinese cities.
Urban areas here are defined as the merging of urban
blocks enclosed by roads with more urban activities
than nonurban areas. Dissecting the existing body of
influential approaches to defining urban areas and
examining cases identifies a link between two domi-
nant factors that are instrumental in achieving the
goal. The first is the urban block demarcated by roads,
which could be considered the basic unit of urban
areas; the second is urban density, which is the key
function characteristic, manifested in density of POIs.
Our findings indicate that the proposed framework
could be used as an open and direct approach by input-
ting high-resolution, ubiquitous data to capture small
block-based urban areas. This study aims to provide a
straightforward and time-saving way to gain insight
into complex urban systems across cities from the bot-
tom up and give the common phenomena for measur-
ing urban sprawl consistently during Chinese rapid
urbanization, along with its policy implications.

Background

Existing Definitions and Methods for Mapping Urban
Areas

The concept of the urban area, although widely
applied, discussed, and referred to, is simultaneously
ambiguous. In the existing literature, it encompasses
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various descriptions, measurements, and applications,
spanning various issues and spatial scales in different
nations. Urban areas in the United States are identi-
fied as urbanized areas (UAs) in a typical administra-
tive model for spatial statistics containing the
incorporated places and census-designated places in
central places and urban fringes controlling for the
population density (Morrill, Cromartie, and Hart
1999). One similar term in Japan is densely inhabited
district (DID), with a population density over 4,000
people per square kilometer. In China, the records of
“one book and two certificates”1 within administrative
areas are widely accepted. Furthermore, UAs in the
United Kingdom are derived from construction-built
areas where certain real estate densities are detected
through satellite images or other data sets (Y. Hu et al.
2008). On the other hand, socioeconomic factors are
also adopted to describe active urban areas; for exam-
ple, labor force markets and commuter sheds used to
represent metropolitan areas (MAs) in the United
States (Berry, Goheen, and Goldstein 1969). Conse-
quently, the empirical and theoretical literature seems
to rule out the possibility that an urban area is the geo-
graphical field where the real urban activities hap-
pened. Current definitions, however, fail to identify
urban areas through explicitly bonding the spatial and
functional dimensions. The real hidden mechanism
that drives urban developments should be uncovered
to illustrate the complexity of defining urban areas.

Parallel to the ambiguity of its definitions, there are
various distinguished methods for mapping urban areas.
From the morphological perspective, remote sensing
images and road networks have received increasing aca-
demic attention. Remote sensing and nighttime satellite
images help to filter rural areas on the basis of transferring
land cover information or scanned light brightness to
indexes (Henderson et al. 2003; He et al. 2006). In addi-
tion, various geometric characteristics of road networks
have been introduced to identify the spatial organization
of cities as physical entities, including road intersection
density (Masucci, Stanilov, and Batty 2012), fractal
indexes (Shen 2002; Tannier et al. 2011; Jiang and Yin
2013; Tannier and Tomas 2013), and size of urban blocks
(Jiang and Liu 2012). In terms of the functional aspects,
applying socioeconomic statistics such as demographic
densities (Rozenfeld et al. 2009), effective employment
density (COAG Reform Council 2012), and infrastruc-
ture accessibility (Y. Hu et al. 2008) have emerged as a
standardmethod of defining urban areas.Whenmore pre-
cise outcomes with higher resolution are expected, how-
ever, the disadvantages of these approaches are evident.

First, remote sensing data–based approaches are limited
by time-consuming interpretation steps and image resolu-
tion. Second, to accurately define cities, using the geo-
metrical approach to directly link to specific spatial units,
such as a block or tile, is difficult despite its advantage in
cities with diverse sizes at an extremely large scale.
Finally, spatial statistics methods are very time-consum-
ing to prepare, limited by fine-scaled censuses, and the
results are most likely to be altered significantly if the sur-
vey frequency is low.

Consequently, many challenges need to be over-
come before a universal model can be established from
the methodological perspective. The foremost chal-
lenge is the question of how fine-scaled spatial units
can be set and which one will be suitable for urban
studies and planning practice. Furthermore, the data
quality for different cities might not permit the devel-
opment of a universal approach. In addition, a difficult
task is finding a straightforward way to generate an
urban indicator describing urban areas while consider-
ing functional aspects. The consistency of methodo-
logical applicability for various cities is always limited
by the refined data sets covering very large geographic
areas. The timeliness of conventional approaches
should be improved to generate temporal results so
that instant urban growth can be monitored.

Computational Urban Areas Mapping

Computer simulations have been used for about fifty
years, aiming for scientific investigations about model-
ing urban areas and their changes. Most of the afore-
mentioned relevant studies adopt complexity theory
and methods including CA modeling, artificial neural
network (ANN), or agent-based modeling (ABM).
Since the 1990s, these two models have been employed
in the fields that study land use and land cover change
(LULCC), urban extension, and urban morphology
(White and Engelen 1993; Cecchini 1996; Batty, Xie,
and Sun 1999). They significantly develop the accuracy
of simulation and improve the weakness of spatial
extrapolation methods (e.g., Markov chain model). In
comparison with ABM, CA modeling is argued to be
more efficient for computing urban areas and their spa-
tial continuity based on more simplified principles from
the bottom up, although the individual decision process
is not factored (Couclelis 1985).

One core theme in defining urban areas through the
CA model is the lattice setting. For solving the modifi-
able areal unit problem (MAUP), the VCA model is
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argued to be closer to reality than the pure CA model
(Stevens and Dragicevic 2007). On the other hand, if
the statues transition rules in the CA model can be
well supported by the fine data sets, urban areas and
their dynamics would be reflected explicitly by CA
simulation (Chen and Mynett 2003; S. Hu and Li
2004). This evidence implies the strengths of VCA
models for building up more accurate and realistic
knowledge about urban areas.

Data-Driven Attempts

Recently, these challenges of urban area delineation
gave rise to methodological developments that address
the same issue from the bottom up based on detailed
street network maps and volunteered geographic infor-
mation (VGI). Several studies concentrated on
extracting a block-based urban area from the transport
layer in OpenStreetMap (OSM; Jiang and Liu 2012;
Jiang, Liu, and Tao 2013). Yet, a pure road network–
based approach is hardly effective for generating fine-
grained blocks and inferring urban blocks using the
head–tail division rule (globally applied) to reflect
temporal urban activities. With this background taken
into account, some studies have been conducted to use
POIs for inferring the function performance of auto-
generated blocks so that urban blocks could be
selected locally. Yuan, Zheng, and Xie (2012) seg-
mented Beijing into disjointed blocks through the ras-
ter-based model, and their functional characteristics
were inferred by incorporating POIs and taxi trajecto-
ries. Long and Liu (2013) proposed an approach called
automatically identifying and characterizing parcels
(AICP) by using OSM and POIs in 297 Chinese cities
at the national scale. They compared the efficiency
and accuracy of the approach with those of other
methods. Apart from previous research, these two
studies shed light not only on the autogeneration of
blocks but also on the functional qualification in terms
of online volunteered data (e.g., POIs). The uneven-
ness of the resolution of OSM among various cities
(Hagenauer and Helbich 2012), however, still limits
the applicability of these methodologies for all cities
and the resolution of the results.

In summary, the new data sets in very high resolu-
tion and the CA models show strong prospects by
addressing the issues of defining urban areas in terms
of data availability and methodological advances.
Although the overall effectiveness of conventional
methods of capturing urban areas has been proven in

many studies, its accuracy, adoptability, immediacy,
and consistency are restricted by methodological
convenience and data availability. In this article, we
intend to fill this gap of knowledge by delimiting
urban areas based on block-based patterns of urban
functions.

Method

Redefining Urban Area

Urban area in this article is defined as the continu-
ous urban built-up blocks (known as dikuai in Chinese)
within an administrative context, where dense urban
activities are agglomerated and more likely to interact
temporally. In this sense, several critical dimensions of
urban areas are well focused on and further incorpo-
rated: administrative identity, spatiality, functionality,
continuity, and temporality.

Specifically, administrative identity refers to the local-
ity of urban areas, which infers governmental ownership
of urban areas; spatiality denotes that the areas should be
reflected by spatial entities—for instance, the blocks are
enclosed by built-up roads; functionality stands for the
fact that urban areas should be recognized to carry a cer-
tain density or intensity of urban activities; continuity
refers to the phenomenon that urban areas tend to be
developed as continuous fields or a patch-like group due
to geographic interaction; and temporality here refers to a
requirement that the urban areas should replicate the
fields where real activities happen temporally. All of these
factors will be reflected in the process of determining
whether land is urbanized or not.

The Proposed Framework

The empirical framework for delineating urban
areas contains three steps based on well-propagated
data: block generation, urban block selection (vector
CA module), and urban area production (block mer-
gence; Figure 1). In the first step, all possible blocks
are defined based on the fine-scaled road layers in the
ordnance survey. In the next stage, blocks are inferred
with their geometrical and geographical properties and
POIs density to automatically select the urban blocks
in a VCA approach. Finally, all of the urban blocks
are dissolved and mapped, thereby clearly generating
urban areas. All of these steps are illustrated fully in
the following sections.
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Steps

Step 1: Generating Blocks and Inferring Their Density

Blocks are important spatial units for contemporary
urban planning and design and urban studies. In this sub-
section, a block is defined as a continuous built-up area
enclosed by roads. Supporting this idea, all of the possi-
ble urban blocks are generated by using the road layer in
an ordnance survey. Before generating blocks, the road
layers are processed according to their hierarchy before
being merged as a single layer. More specifically, all seg-
ments are connected with a 20-m tolerance, and street
segments shorter than 200 m are trimmed to avoid cul-
de-sacs. This threshold selection is reliant on the basic
judgment of collected spatial data sets. Moreover, the
width of all roads is also defined, relying on their hierar-
chy. Finally, all initial blocks are presented when the
roads are removed from the study areas.

Four properties are further calculated for each
block. The first two refer to the geometric characteris-
tics of each block, including the size and compactness
determined by the block’s shape. In addition, accessi-
bility of each block is taken into consideration as a
locational variable for describing a block. Another
characteristic is the functional attribute of a block for
reflecting its actual use. The number of POIs within or
close to a block are featured as its urban density. Due
to the natural unevenness of urban density between
big cities and the small ones, POI density is further
normalized and placed between 0 and 1 to release the
heterogeneity among cities. Because of lack of further
attributes of the importance of POIs, the popularity of
each POI is assumed as the same in this study. When
any substitutions are available, they can be expected
to approximate the intensity of urban activities explic-
itly. Hence, in the way of using the road network and
POIs to identify initial blocks, the spatial and func-
tional features are incorporated together to present the
suitability of blocks.

Step 2: Selecting Urban Blocks by Using VCA

Vector-based constrained CA models are used for
selecting urban blocks from the initial ones generated
by road networks in diverse cities. It is assumed in this
article that this process is similar to modeling urban
expansion, which extensively uses CA applications.
Apart from the conventional raster CA model (Batty,
Xie, and Sun 1999), vector-based CA models depend
on irregular polygons rather than regular cells. In this
research, each block is regarded as a cell with a valve
that is 0 (urban) or 1 (nonurban). Based on existing
studies (Li and Yeh 2000; Li, Yang, and Liu 2008; X.
Liu et al. 2008; J. Liu, Zhang et al. 2010), this can be
illustrated with the following formula:

StC 1
ij D f Stij; Vt

ij;Con; N
� �

: (1)

Here, a block’s status at tC1 is considered as a function f
of the block’s statues and other proposed factors at t. In
this function, Sij

t and StC 1
ij denote the statues of blocks

at time points of t and t C 1, respectively; Vij
t is the

neighboring situation; Con refers to the constraints, and
N is the number of all blocks. This function can be fur-
ther transferred to a detailed probability formula:

PtijD .PlÞij £ .PVÞij £ con :ð Þ£ Pr: (2)

In this function, the possibility of transforming a
block’s state at t is illustrated as the multiplied product
of probabilities of factors. Specifically, .Pl/ij stands for
the local potential that a block would convert its sta-
tus from the nonurban to the urban, and .PV/ij denotes
the conversion possibility in terms of the neighboring
definition; con.�/ stands for constraints; and Pr is the
stochastic term.

The proposed spatial and functional characteris-
tics are reflected in measuring the local potential.

Figure 1. Flowchart of the proposed framework. Note: VCA D vector cellular automata.
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This could be explained in the following formula
using a logistic regression model (Wu 2002):

.PlÞijD
1

1C exp ¡ a0 C
Xm

kD 1
akck

� �h i ; (3)

where a0 is a constant, ak is an estimated coefficient
responding to the spatial variable ck, and m is the total
number of spatial variables. As a result, spatial and
functional factors are bonded to reflect a block’s state
in this study. Block size is measured in the logarithm for
calculating the polygon’s area. Compactness of each
block is calculated as the rate of the perimeter square
subdivided by its area. Accessibility is abstracted using
the minimum Euclidian distance to the city center. On
the other hand, the functional factor is presented by
applying the standardized POIs density, which is mea-
sured through calculating the rate of raw density in the
maximum density within the study area.

The neighboring potential for a block is measured
by the amount of peripheral urban blocks around it.
This can be defined as

.PVÞijD
X

con StijD urban
� �
n

(4)

For block ij, con.Sij
tD urban/ stands for the urban

blocks within fixed areas, and n is the sum of all acces-
sible blocks. The adjacent relation is defined as 500 m
around the block ij.

Two layers—the steep area (a slope over 25 degrees)
and various water bodies—are included as restriction con-
ditions. Urban expansion is impossible in these areas. The
constraints are expressed as con.cellij

tD suitable/ with a
value of 0 or 1, where 1 indicates that there is no restric-
tion on the block’s development as urban, whereas 0
indicates that the block is restricted from development.

The stochastic disturbance Pr in the model stands
for any possible change of local policies and accidental
errors. It is calculated using

PrD 1C ¡ ln gð Þb; (5)

where g is a random number ranging from 0 to 1, and
b, ranging from 0 to 10, controls the effect of the sto-
chastic factor.

Furthermore, by comparing the measured probability
.Pl/ij with a calculated threshold value Ptthd in the tth
interation, the block’s status at t C 1 can be detected.

The threshold value in the tth iteration equals the final
potential of the nth block (Ptn) in the case that the accu-
mulated urban area for the initial n blocks with greatest
transit potential reaches to the defined total amount of
urban area in the tth iteration. In other words, the urban
blocks are captured from highest to the lowest potential
until the accumulative urban area reach as the area limi-
tation for each iteration in each city. The number of iter-
ations (Numitr) is predefined by the user, and then the
total area of urban blocks (TotalArea) for each iteration
(stepAreat) is calculated accordingly. In this study, the
statistics for urban area in 2012 for each city are obtained
fromMinistry of Housing and Urban-Rural Development
(MOHURD) records (MOHURD 2013) and project that
the number of iterations run in the simulation process for
each city is 100. This method can balance the computa-
tion time and the quality of results. If the measured value
is greater than the threshold, the block is considered to
be urban; if not, the block will stay as nonurban. This
progress can also be presented as shown here:

StC 1
ij D Urban for Ptij > Ptthd NonUrban for Ptij� Ptthd

�
(6)

Ptthd D Ptn

X
n

Areatn � stepAreat

 !
(7)

stepAreatD TotalArea

Numitr
: (8)

The whole simulation process of the CA model for
every city in this study is shown in Figure 2, in which a
general picture of parameter calibration and transit rule
generation is illustrated. Accordingly, the iteration
maps are also showcased in Figure 3 to present the typi-
cal transit process in the projected CA model in this
study. First, the prerequired data sets are input to the
model as basic variables. Specifically, before the itera-
tion process starts, a group of initial urban blocks is
defined according to their ranks of local potentials and
the total area of urban blocks in each step (stepArea) is
calculated according to the reported urban area in offi-
cial documents and the setting of iteration times. Spatial
variable selection and coefficients are further computed
based on the historic urban development situation of
typical cities. In every iteration, the local potential, con-
version possibility, and stochastic disturbance are calcu-
lated and further packaged as the final transit potential.
In the step of allocation, the block with the maximum
final transit probability is converted from nonurban to
urban in the allocation process until the cumulative area
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of defined urban blocks reaches the proposed amount of
urban area for every step. The iteration process is con-
ducted for the proposed times, ensuring that the reported
total area of urban blocks is reached. The whole simula-
tion is ended when a block-based urban area pattern is
generated.

Step 3: Mapping Urban Areas Using Selected Urban
Blocks

Because street spaces and small unselected urban
blocks surrounded by urban ones are also included in
urban areas in planning practices, the selected urban
blocks need to be transformed to urban areas. To map
the urban areas of all cities in China, the selected
urban blocks are remerged into the integrated urban
lands in ESRI ArcGIS (Version 10.2, ESRI, Redlands,
CA) using the toolbox function Aggregate Polygons
to present the urban areas for each city. This tool is

used for moderate scale reduction and aggregation on
selected urban blocks. Aggregation will only occur
where two blocks are within the specified aggregation
distance to each other. According to the requirements
of Chinese urban blocks, the distance to be satisfied
between block boundaries for aggregation to happen is
set to 500 m and the minimum area for an aggregated
block to be retained is 1 ha. In addition, orthogonally
shaped output urban areas are created for preserving
the geometric characteristic of anthropogenic urban
blocks. The projected approach is conducted in all 654
reported cities individually to speed up the block
aggregation process. Urban areas of each city can then
be mapped based on selected urban blocks.

Step 4: Model Validation

For validating our proposed model, self-validation
and external justification are performed separately for

Figure 2. Flowchart of proposed cellular automata model.
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cross-verifying the applicability in delineating urban
areas among various cities. For the self-validation, all
cities are ranked to detect the scaling law of city size
horizontally on the one hand; urban blocks within typi-
cal cities at various administrative levels are also rated
for finding the linear relation of a logarithmic scale rules
of block sizes on the other hand. In addition, the auto-
matic generated result of urban areas for all Chinese cit-
ies is compared with the outcomes produced by several
classical methods reviewed in the Introduction section
based on geographical coverage data sets containing
remote sensing images, census-based population density,
and road intersection density. Additionally, the results
are evaluated with other data, including online check-
in data sets and POIs, proving their effectiveness at
reflecting temporal urban intensity of activities.

Process as a Constrained Inversion

The whole process of automatic identification of
urban areas could be described as holistic constrained
inversion of urban areas (Figure 4), which is a method
for speculating very large and complex urban areas
based on a relatively small amount of typical observed

data. To avoid subjective factors setting, this model
requires the verified effective constraints or parameters
in some typically observed cases at the first stage. This
process can be considered a partial inversion, a way to
generate key constraints in defining urban areas. In this
study, the urban density measured by POIs density is
proven to be a key factor in identifying urban blocks in
each city. To better define it in so-called holistic con-
strained inversion, there are two steps: The first part is
about block segmentation and the second part is for
blocks’ mergence. These two steps interact with each
other using POIs density and other factors to select

Figure 4. Constraints inversion of identifying urban areas.

Figure 3 The interaction maps to select urban blocks at t and t C 1 time: (A) the initial blocks enclosed by urban streets; (B) identification
of initial urban blocks (in red); (C) captured urban blocks at t time (in red); (D) selection of new urban blocks at t C 1 time (in blue).
(Color figure available online.)
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urban blocks. This proposed open framework has sev-
eral potentials to address the questions of identifying
urban areas: First, it offers a method to generate block-
based urban areas in a large-scale manner, relying on
universal rules discovered in typical samples; moreover,
it can be used as a reference to validate the surveyed
urban areas; and, finally, it could further imply the
potential role of an omnipresent data set in duplicating
urban areas from a vast scope. Therefore, not only for
promoting our model of delineating urban areas based
on POIs and road networks, this study advocates an
open framework for presenting block-up distributions
of urban areas by combining holistic and partial inver-
sions at different levels. That is to say, the model dis-
cussed in this article is an open system combining local
equation-based analysis and global simulation, which is
ensured for future development within the context that
location-based data are increasingly available.

Data

Administrative Boundaries of Chinese Cities

Administrative boundaries of 654 Chinese cities2—
the limitations of local geographies—are applied to
partition the research areas into city boundaries so
that ordnance survey maps and POIs can be curved off
accordingly (Figure 5). According to the Chinese
administrative system (MOHURD 2013), there are
five levels of cities classified in this way: municipalities
directly led by the nation (MD, 4 cities), subprovincial

cities (SPC, 15 cities), other provincial cities (OPCC,
17 cities), prefecture-level cities (PLC, 250 cities),
and county-level cities (CLC, 368 cities). This system
also reflects the hierarchy of these cities in terms of
city size and population. By doing so, the research
scopes are specified to administrative areas of urban
lands by keeping the national scale in mind. The prin-
ciples of defining the administrative boundary of each
city are not the same for the local governments, how-
ever, as the consequence of differentiation between
cities in terms of urban land protection (the ratio of
administrative land to all land cover). To achieve an
objective spatial statistical result of reported urban
area for every city, the applied administrative bound-
aries are geocoded according to a statistical yearbook
with a well-calculated urban area (National Bureau of
Statistics 2013).

Total Urban Area of Chinese Cities

Based on defined city administrative boundaries,
statistics of urban areas are extracted from MOHURD
(2013) to allocate the total into urban blocks in each
city. Through 2012, the total urban area of 654 cities
in China reached 46,744 km2. An individual city is
inferred by its statistical area accordingly (Figure 6).
Consequently, our research areas in all of the cities are
specifically featured with their administrative subordi-
nation and total urban area.

Road Network in Ordnance Survey and POIs in
2012

The ordnance map is considered to be the autho-
rized map reflecting the most urban information
(Haklay 2010). Urban streets, regional roads, and
many other detailed streets are encompassed in the
Chinese ordnance survey map, which is the most reli-
able data set obtained from a national institution. The
applied data set of road networks in this research is
derived from the ordnance survey data set (2013) pub-
lished by Chinese geographical institutions, which has
been compared with online data sets (e.g., Google
Maps and Baidu Map) to prove its accuracy. In the
study conducted by Long and Liu (2013), the Chinese
ordnance survey map was compared with Open Street
Map (OSM). The ordnance survey map was found to
be far more detailed regarding the total segments and
length of roads. The employed database in this study is

Figure 5. Administrative areas of Chinese cities. Note: MD D
municipalities directly led by the nation; SPC D subprovincial
cities; OPCC D other provincial cities; PCL D prefecture-
level cities; CCL D county-level cities. (Color figure available
online.)
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made up of 6,026,326 segments with a total length of
2,623,867 km (Figure 7).

POIs containing a total of 5,281,382 points were
gathered from business cataloging web sites—Sina
Weibo. There are eight main types of POIs in the ini-
tial data set, and each type refers to one specified type
of urban activity in the data set. The detail contents
of POIs are shown in Table 1. All of the POIs are
adopted in this empirical study to measure the land
use density through calculating their total amount of
activities for each generated block. These randomly
selected sample data sets have been manually

checked to ensure the overall data quality. It is note-
worthy that the proposed empirical research frame-
work is extendable in the way that the POIs data set
can be replaced by other information regarding the
distribution of urban activities.

Results

Model Calibration for VCAModel

Logistic regression is conducted for calibrating the
weights for constraints in the proposed VCA models.

Figure 6. Total urban area in 2012 at the city level. (A) China; (B) Beijing-Tianjin-Hebei (BTH); (C) Yangtze River Delta (YRD); (D)
Pearl River Delta (PRD). Note: The urban expansion rate during 2007–2012 for each city is also mapped in this figure to show the historical
urban expansion of Chinese cities. (Color figure available online.)
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Due to data availability, it is nearly impossible to cal-
culate the weights of controlling factors for each city,
thereby reflecting the spatial heterogeneity between
cities. Hence, the 2010 blocks data set in Beijing City
manually prepared by urban planners in Beijing Insti-
tute of City Planning (BICP) is applied as a typical
example of all other cities (BICP 2010). It covers an
area of 12,183 km2 at a very fine scale of urban blocks
(Yanqing and Miyun counties in the Beijing

Metropolitan Area are excluded from Beijing City).
There are 52,330 blocks reported, of which 36,914
blocks are identified as urban.

According to the result of a binary logistic regression
(Table 2), 78.9 percent of all blocks can be explained
by the generated function. All factors except compact-
ness passed the p test, revealing that they are signifi-
cantly related to the differences between nonurban and
urban blocks. These logistic regression results have
been employed in VCA models for all Chinese cities.
To test the accuracy of this model, the generated results
for Beijing City from the CA model were compared
with the BICP data set again, and an overall explana-
tory ability of 81.5 percent on the real urban areas indi-
cates the applicability of our model in delineating
urban areas in terms of urban blocks.

Selected Urban Blocks

The proposed constrained VCA model was con-
ducted on all 654 reported cities in China, for which a
sum of 707,330 urban blocks with 51,286 km2 in area
was detected and labeled as urban from among all
851,054 initial blocks (Figure 8). The average num-
bers of urban blocks in cities on various administrative

Figure 7. Ordnance roads of China in 2012: (A) China; (B) a part
of the central city of Beijing.

Table 1 Classification of point of interest types

Type Abbreviation Count

Commercial sites COM 2,573,862
Office building/office space OBS 677,056
Transport facilities TRA 561,236
Government GOV 468,794
Education EDU 285,438
Residence communities RES 167,598
Green space GRE 13,041
Others OTH 534,357

Table 2 Binary logistic regression results for BICP blocks

Name Coefficient SE Significance

Constant 5.359 0.058 0.000
Natural logarithm of block size ¡0.306 0.006 0.000
Distance to the city center ¡0.099 0.001 0.000
Points of interest density 3.431 0.085 0.000

Note: BICPD Beijing Institution of City Planning.

Figure 8. Selected urban blocks for all Chinese cities. (Color
figure available online.)
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levels differ from each other significantly. There are
1,411 urban blocks in an average MD, followed by 407
in SPC, 199 in OPCC, 79 in PLC, and 26 in CLC.
When scrutinizing these statistics, the greater the pop-
ulation or higher administrative ranks the cities occu-
pied, the greater number of urban blocks they will
have. In other words, the scaling laws of the popula-
tion or city size can be observed in terms of the
amount of urban blocks in each city.

Scaling law is a universal rule not only for natural
phenomenon but also for urban areas (Arcaute et al.
2013). On a logarithmic scale, this relationship
between the size of urban areas and their frequency
distribution should be linear. It also self-validates the
proposed VCA models for each city in this article
(Vliet, White, and Dragicevic 2009). To verify the
performance of the model between cities, the size of
all cities (in terms of the number of urban blocks in

Figure 9. Power law distributions (A) in terms of the block numbers for all 654 cities; (B) in terms of block size for typical cities. (Color
figure available online.)
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each city) is plotted against their ranks (Figure 9A). A
shape that reveals a long tail distribution recognizes
that there are far more cities with fewer urban blocks
than those with a large number of urban blocks (Jiang
2013). When it comes to the log-log distribution, a
perfect power law fit (R2 is 0.988 and alpha is 2.06)
can be observed by considering the cities with more
urban blocks than the average level. Thus, the signifi-
cant rank-size pattern with high R2 values indicates
the applicability of our models for all cities.

On the other hand, the power law fit is also
adopted in analyzing the ranks of urban blocks’ size
in typical cities at various governmental levels for
understanding the applicability of this proposed
approach in each kind of city internally. Generally,
the power law fit for all blocks can explain around
70 percent of urban areas. Better regressions are
implied in the cities occupying higher administra-
tive levels than those at lower levels. More specifi-
cally, the alpha values for Beijing, Nanjing, and
Changsha are all above 1.37 and the adjusted R2 is
greater than 0.77, whereas Weifang and Gongzhul-
ing have alpha values of 1.28 and a smaller R2,
which is about 0.65. Removing blocks less than the
mean size results in better power law fits (all R2

increased above 0.9). Shared similar trends
emerged, suggesting that our models can be applied

in modeling the urban blocks within different kinds
of cities.

Urban Areas of All Chinese Cities

Merging all selected urban blocks automatically
illustrates urban areas of all Chinese cities. For gaining
more insight into these results, the typical cities (e.g.,
Beijing for MD, Nanjing for SPC, Changsha for
OPCC, Weifang for PLC, and Gongzhuling for CLC)
on different administrative levels are listed and com-
pared with the results from other data sets including
the Defense Meteorological Satellite Program/Opera-
tional Linescan System (DMSP/OLS), census-based
population density, and road intersections (Figure 10).

Compared with the results from other data sets,
the urban area generated through our approach has
generally higher resolution than other databases.
The outputs captured using the other three data
sets are highly correlated to the ones detected in
our projected framework in relatively developed cit-
ies in terms of initial judgment, which might be
mainly on the basis of the fact that there are better
digital infrastructures and small census settings for
survey in the big cities. This assumption can be
verified by comparing the results of developing cit-
ies. Thus, our approach can produce more detailed

Figure 10. The profile of urban areas for typical cities. Note: MD D municipalities directly led by the nation; SPC D subprovincial cities;
OPCC D other provincial cities; PLCD prefecture-level cities; CLCD county-level cities; DMSP/OLS D the Defense Meteorological Satel-
lite Program/Operational Linescan System. (Color figure available online.)
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results than the other two. The generated urban
area was further overlapped with other results to
detect the overlapping rates for higher precision.
More details can be found in the Model Validation
section.

Discussion

Model Validation

Our model validation is conducted by comparing
urban areas with five data sets for all 654 Chinese cit-
ies: (1) the urban area’s space defined at the 300-m res-
olution in GLOBCOVER (Bontemps et al. 2011); (2)
the urban areas presented in the 1-km resolution
retrieved from DMSP/OLS in 2008 (Yang et al. 2013);
(3) the urban areas represented by subdistricts with
population DENSITY greater than the mean density
(977 people per square kilometer) of all 39,007 subdis-
tricts of China in 2010 using Jiang’s (2013) head–tail
division rule and the 2010 population census of China
(Wu et al. 2015); (4) the urban areas presented by
road INTERSECTION density using the ordnance
survey applied in this study. Urban areas are selected
in each city by sorting all grids’ estimated kernel densi-
ties of road intersections while considering the
observed total area of a city; (5) the LANDSET TM
data set, another authorized land use map, obtained
from a recent study regarding LULCC in China (J. Liu
et al. 2014).

All of the results are shown in Table 3. In terms of
the captured size of urban blocks, the urban blocks in
this study (average size is about 300 m * 400 m) are
far smaller than the ones reported in the other four
data sets, reflecting that better scaled outputs are
achieved through our approach. From the perspective
of overlapping rate, our study detected that 65.5 per-
cent of common urban areas (a total of 30,606 km2) in

our outputs intersected with DMSP/OLS. With con-
sideration of time mismatch between these two data
sets, our suggested approach can be expected to pro-
duce accurate results for all Chinese cities depending
on the preceding evaluation. The results of this study
and the data of GLOBCOVER are not as good as ini-
tially expected. There are only 20,801 km2 of urban
area (44.5 percent) in our result that intersect with
GLOBCOVER. This might be the result of noncorres-
pondence between these two data sets regarding time
and resolution. A total of 81.9 percent of urban areas
fall into the urban category represented by population
density, indicating that most of our results are associ-
ated with high population density. The overlapped
ratio over 80 percent is partially due to the overesti-
mated urban areas in DENSITY, which is nearly three
times that stated by MOHURD (2013). The compari-
son of results between ours and the ones generated
using road intersections are highly acceptable (76.8
percent), which could be attributed to the same data
source being used in both methods. In our results, 74.2
percent of the urban areas overlapped as urban land
cover in LANDSET TM. The correlating rate is
higher as the result of the inconsistency between a
grid-based map and vector-based patterns.

Admittedly, it is hard to determine which result
could be most accurate because each method could
reflect one kind of possible answer to the same ques-
tion. The overall correspondence, however, between
the output produced by the introduced approach and
the different existing data sets of urban areas informs
the effectiveness of the method applied in this article.

To determine the precision of our approach about
mapping the real urban intensity of activities used sev-
eral times in generated urban areas, online check-in
data sets collected from one of the largest Chinese
check-in Web sites and the POIs data set are adopted.
As shown in Table 4, within our defined urban areas
for all 654 Chinese cities, 85.9 percent of urban

Table 3 The comparison of urban areas in various data sets for 654 cities in China

Data Year Spatial resolution Urban area (km2) No. of patches Average patchsize (ha)
Intersected with

ORDNANCE (km2)

ORDNANCE 2012 269 m 46,713 18,404 312.5 N/A
DMSP/OLS 2008 300 m 45,834 1,345 3,407.7 30,606 (65.5%)
GLOBCOVER 2009 1 km 39,789 12,701 313.3 20,801 (44.5%)
DENSITY 2010 6.7 km 126,860 728 17,425.8 38,245 (81.9%)
INTERSECTION 2012 500 m 46,703 4,221 1,106.5 35,868 (76.8%)
LANDSET MT 2010 1 km 45,201 2,892 1,562.9 34,644 (74.2%)
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intensity measured by online check-in data is mapped
in the results of our urban areas, whereas 76.1 percent
of surveyed POIs are for all Chinese cities. This further
illustrates that the proposed method in this study can
be successfully employed to generate digital urban
areas that reflect actual urban activities.

Horizontal Evaluation on Methods for Delineating
Urban Areas

In addition to quantitatively comparing our results
with methods, there are six dimensions that are consid-
ered for qualitatively evaluating the strengths of exist-
ing methods, including practicality, geographical scale,
result resolution, data availability, methodological con-
venience, and dynamics (Figure 11). Ten professionals
in different planning institutes in China were inter-
viewed and asked to rate the performance of every

approach according to their working experience. Practi-
cality here refers to the value for real planning and
design projects. Due to the similarly basic spatial units
setting, our urban block-based results are generally con-
sidered the most straightforward method to reflect
actual developments in urban blocks. In the meantime,
conventional approaches (e.g., DMSP/OLS, survey
block maps, and population density maps) are also
labeled as practical tools to help understand urban
extent. Moreover, the approach proposed in this study
is expected to better balance the dilemma between the
cover scale and result resolution in traditional models.
Relying on the open data sets in the background of
development of VGI data sets, the method projected in
this article is also well-thought-out to be a publicly
accessible and temporally updatable data set for urban
planning and studies. Regarding the methodological
convenience, spatial survey and statistics-based methods
are understandable, whereas our approach is understood
as a direct way of packaging complex simulations in an
automatic manner. All of these evaluations are gener-
ally based on the reality of urban planning in develop-
ing countries, particularly in China, which means that
an assessment addressing the same issue would be differ-
ent in developed nations where urban surveys and sta-
tistics have been conducted for many years. It is still
worth promoting our produced method in Web 2.0,

Figure 11. Comparison between existing methods of delineating urban areas. Note: POIs D points of interest; CA D cellular automata;
DMSP/OLS D the Defense Meteorological Satellite Program/Operational Linescan System.

Table 4 Coverage of urban areas in terms of urban intensity
(measured by online check-in data set) and land uses

Data Year Covered Uncovered Coverage

Online check-in 2013 14,643,090 2,401,023 85.9%
Points of interest 2012 2,987,338 937,390 76.1%
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however. It is a large model (Long et al. 2014) in a
direct, fine-scaled, and dynamic sense based on omni-
present open data, thereby benefiting the understanding
of urban areas for city management and planning.

Potential Bias and Further Steps

This study proposes an automatic framework to gen-
erate urban area and provides examples with all Chi-
nese cities. The increasingly available VGI in this
framework also promotes the merits of this approach.
Nevertheless, several limitations still exist in this
study, which will be highlighted in our future research.
First, current methodology could be directly improved
based on the increase in open data availability. Loca-
tion-based online information (e.g., check-ins) could
infer the weights of POIs, thereby reflecting actual
urban usage more accurately. Second, more samples of
cities should be used for model calibration to enhance
the precision of our approach, even if our methods
have already proven the applicability and flexibility of
applying local constraints rather than global ones for
all cities. Finally, the presently applied city-level urban
area statistics could be replaced by fine-scaled ones
(e.g., districts or even subdistricts) to control the total
area of urban blocks in a more detailed manner.

Conclusion

In this article, a VCA model is proposed based on
road networks in ordnance survey and POIs for explicitly
delineating block-based urban areas. Urban areas in all
654 cities in China were generated using our approach.
The whole process contains several components, includ-
ing block generation, urban block selection, and urban
area production. In the first step, a road network layer in
ordnance survey is applied to define blocks by removing
buffered roads from the study area. In the following
stage, all blocks are equipped with attributes such as size,
compactness, accessibility, and POI density. The VCA
model is then adopted for identifying urban blocks from
among all generated blocks, taking into account the spa-
tial variables of each block as well as conveyed total area
in each city. Finally, the urban areas of each city are
mapped by aggregating urban blocks. In the process of
self-validation, power law fits are detected when analyz-
ing the relationships between generated urban blocks
and their ranks across cities and the correlations
between blocks’ size and the frequency distributions in
five typical cities, indicating the applicability of our

approach. The final results are also validated by compar-
ing them with urban areas presented by DMSP/OLS,
GLOBCOVER, population density, road intersection
density, and LANDSET TM maps. After interviewing
relevant urban planners, the proposed approach in this
article was given a high ranking on various dimensions.
In summary, our model is proven to be not only effective
in modeling urban areas through incorporating spatial
and functional features of urban blocks but also more
straightforward, time-saving, and fine-scaled, when
compared to other existing models.

The projected framework has the potential to bene-
fit relevant urban studies and policy distributions.
Through this study, the current status of urban devel-
opment can be reflected at a standard level, thus feed-
ing both intracity and inner-city academic studies.
Our model would be more helpful for relatively small
cities where digital infrastructures are poor and fine-
level statistics are hardly secured. On the other hand,
it can significantly lower the costs of collecting data
temporally without a large investment. Second, the
urban area simulation process could promote a deeper
understanding of block-up urbanism that reflects the
progression of a large site divided and sold off for
development. Third, this model can be further devel-
oped into an advanced version simulating urban
expansion. It might directly benefit predictive urban
planning and evaluate the effectiveness of strategies
and policies. Fourth, our model can be methodologi-
cally helpful in unifying the calibers of defining urban
areas among diverse cities based on ubiquitous data
and reclaiming the need for consistency, efficiency,
and temporal renewability in defining urban areas with
omnipresent spatial and functional factors across cities.
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Notes
1. “One book and two certificates”—containing a proposal

of project location, the permit of land planning, and the
permit of construction planning—refers to the construc-
tion approval files delivered by the government based
on urban planning law.

2. Sansha in Hainan and Beitun in Xinjiang appearing in
MOHURD (2013) were not included due to spatial
data availability. Taiwan was not included in all analysis
and results in this article.
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