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Abstract: Climate change, as a serious environmental problem contemporary
society faces, has led to an international debate over what should be done to
reduce energy consumption and corresponding negative environmental impact.
Extensive research has found that a dominant share of urban energy
consumption belongs to transport sector (e.g. commuting, shopping travel, and
school travel etc.), which has a strong relationship with urban form. However,
little attention has been paid to the relationship between urban form, transport
energy consumption, and its environmental impact in the inner‐city level. This
paper aims to propose the LCF‐PSS: an integrated planning support system for
supporting the achievement of the low carbon form in cities. After proposing the
whole framework, we tested it in a simplified virtual space to demonstrate its
workability. In this test: 1) three land use types (R Residential, C Commercial,
and O Others) were considered; 2) Planner Agents (PAs) established four urban
forms (including land use allocation and urban density distribution); 3) 2000
agents, with various socio‐economic attributes, found a R parcel to live, and a C
parcel to work; 4) each agent chose a travel mode to commute be‐tween living
and working parcels; 5) we calculated the amount of energy consumption and
environmental impact for the commuting of each agent using provided
indicators for each travel mode; 6) finally, we found a low carbon form (LCF) by
comparing the total amounts of energy consumption for four established forms.
Results show the framework has the potential to support the achievement of low
carbon forms in cities.
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1. Introduction
Climate change, as a serious environmental problem contemporary society faces,
has led to an international debate over what should be done to reduce emissions
of greenhouse gases (GHGs). The proportion of GHG emissions resulting from
cities is between 40 and 70%, and urban areas are now regarded as a vital part
of the global response to climate change (UN‐Habitat, 2011). Against this
background, many actions have to take place in cities to mitigate the
phenomenon of climate change.

Urban form, or land use pattern, is defined herein as spatial distributions of
different land use types and development densities for parcels or blocks. A low
carbon form (LCF) here means an urban form that creates less energy
consumption and negative environmental impact compared with other urban
forms. Many studies have proved that achieving a LCF of urban areas is crucial to
the reduction of GHG emissions and the development of a low carbon city. For
example, Williams, Burton, et al. (2000) presented a systematic research, which
defined elements of sustainable urban form from macro to micro scale and
provided case studies around the world, to illustrate how to achieve sustainable
urban form. Holden and Norland (2005) conducted a survey in eight residential
areas in the Greater Oslo Region, and the results supported the hypothesis that
there is a connection between land use characteristics and household
consumption of energy and transport. Hamin and Gurran (2009) identified five
key factors that can assist in reducing vehicle miles travelled (VMT); they are
higher development density, diversity (greater mix of land uses), design (e.g.
smaller block size), destination accessibility (e.g. more jobs or other attractions
reachable within a reasonable travel time), and distance to transit (shorter
distance from home or work to nearest rail station or bus stop). Although
consensus is lacking about the exact nature of the relationship between the
shape, size, density and uses of a city and its sustainability (e.g. Echeniquea,
Hargreaves, et al., 2012), its existence has been now widely accepted (Williams,
Burton, et al., 2000).

Among existing LCF‐related studies, a large portion is focused on the
quantitative analysis of the relationship between urban form and energy
consumption or CO2 emission. Energy consumption in cities are mainly from
transport, household, and industrial sectors. Among various sectors, transport
and household ones have been most widely studied. For example, Ewing and
Rong (2008) presented a conceptual framework linking urban form to
residential energy use via electric transmission and distribution losses, energy
requirements of different housing stocks, and space heating and cooling
requirements associated with urban heat islands; Hatzopoulou, Hao, et al. (2011)
proposed a activity‐based model, which can provide agent‐based output that
allows vehicle emissions to be tracked back to individuals and households who
are producing them; Liu and Sweeney (2012) investigated the relationship
between household space heating energy use and urban form (land use
characteristics) for the Greater Dublin Region; Marique, Dujardin, et al. (2013)
analyzed the energy consumption, travel distances and mode choices for school



commuting based on two decennial surveys in Belgium. However, most of these
studies usually use aggregate data, and treat the city as a whole sample, while
not too much attention has been paid to the analysis of city parts. The application
at a fine scale (e.g. a parcel level in the city) is greatly limited to the availability of
individual or household data. Some have considered a fine scale analysis, but the
consideration is limited to some extent. For example, the planning support
system (PSS) called FEE‐MAS (Long, Mao, et al., 2013) are not aimed to the
application of urban planning or to establishing a LCF in real cities; only a
conditional disaggregation process was applied to the residential cells in the
model proposed by Schindler and Caruso (2014).

There is some literature aims to find out what kind of urban form scenarios are
low carbon. They can support the achievement of LCF, and make a good
reference to decision‐makers and urban planners. Gomi, Shimada, et al. (2010)
developed a local (city‐scale) low‐carbon scenario creation method; an
estimation model was developed to show a quantitative and consistent future
snapshot, and applied to Tokyo City to identify countermeasures to achieve the
low‐carbon target. Phdungsilp (2010) used long‐range energy alternatives
planning (LEAP) system model to simulate arrange of policy interventions, and
to show how energy usage might develop in Bangkok from 2000 to 2025.
Keirstead and Shah (2011) presented a tool for calculating absolute minimum
urban energy benchmarks, which can be used early in the planning process to
complement more behaviorally realistic land use transport models. However, the
number of these studies is limited, and a disaggregated way is still ignored
among them. Additionally, although they can provide good reference to decision‐
making and planning processes, all of them didn’t integrate the establishment
process of urban forms, by considering the role and function of urban planners,
into their models or methods, and identify which alternative can be regarded as
a LCF by comparing different urban scenarios.

In this paper, an integrated framework of planning support system (called LCF‐
PSS) is proposed for achieving a low carbon form in cities. After this, a virtual
space test will be conducted. In detailed process, several urban forms should be
established at first, followed by the generation of residential agents. After the
choice of residential and workplace locations, the energy consumption and
environmental impact (EC‐EI) will be calculated for the commuting of each agent,
then for each urban form by summing the amount of all agents. After the
comparison among different urban forms, the most low carbon one (or low
environmental impact) can be identified as the LCF. In Section 2, the framework
will be provide, followed by the virtual space test in Section 3. Finally, a concise
conclusion will be given in Section 4.



2. The LCF‐PSS framework
2.1 General description

Travel energy consumption and environmental impact (EC‐EI) depends on travel
demands, which include travel type (e.g., job, study and entertainment), frequency (e.g.,
5 times a week), distance, and mode (e.g., bike and car). Travel demands can be
influenced by socioeconomic attributes of residents (e.g. age and income), and the urban
form (land use types and development density). For example, travel type and frequency
are related to socioeconomic characteristics of travelers, travel distance is related to the
urban form, and travel mode is related to all of them. According to these, a series of
steps are introduced to identify the relationship between the travel EC‐EI and the urban
form, and support the calculation of travel EC‐EI for each established urban form (See
Figure 1). Each main step corresponds to a model or a module, and there are six models
(modules) in total in the proposed LCF‐PSS framework. Six models (modules) are as
follows:

1) an urban growth model for simulating future urban development from non‐urban
built‐up land to urban built‐up land; 2) an urban allocation model, called Planner Agents
for allocating land use types and development intensity; 3) a population synthesis model,
called Agenter for disaggregating heterogeneous agent attributes; 4) a location choice
model for simulating the residential and work location choices of each agent; 5) a travel
mode choice model; and 6) a EC‐EI calculation module.

Firstly, an urban growth model is used to simulate future urban development from non‐
urban built‐up land to urban built‐up land at the parcel level. The model adopts a vector‐
based CA method, and a process of automatic subdivision of land parcels can be
integrated into it. Secondly, Planner Agents is used to establish the urban from,
including land use allocation and urban density distribution. The allocation of floor area
ratio (FAR), defined as the ratio of a building’s total floor area to the size of the piece of
land upon which it is built, is used to represent the development density distribution in
this paper. Thirdly, a certain number of residents with socioeconomic information will
be generated using Agenter using aggregate data, small‐scale surveys, and empirical
studies. Generated agents have socioeconomic attributes, such as age and income etc.
Fourthly, a location choice model is used to simulate the residential and work location
choices of each agent. Residential parcels are selected as residents’ home places, and
commercial or industrial parcels are selected as agents’ work places. The location choice
should obey the constraint of each parcel’s FAR value. For example, no more than three
residents can reside in a parcel with the FAR as 3. Fifthly, agent commutes between
home and work places via bus, car or walk etc., which is determined by a travel mode
choice model. And finally, the EC‐EI of each agent can be calculated based on the normal
amount of EC‐EI for various travel modes. The EC‐EI of the urban form can be calculated
by summing up the amount of all agents. The LCF can be identified by comparing the EC‐
EIs of different urban forms.

The detailed description for each model is in the following subsections. Figure 1 shows
the flow diagram of the LCF‐PSS framework.



Figure 1. The flow diagram of the LCF‐PSS framework

2.2 The urban growth model

Over last two decades, Cellular Automata (CA) has been widely applied in
generating realistic urban growth scenarios for its ability to simulate the
dynamic spatial process from a bottom‐up perspective (Landis, 1995; Guan,
Wang, et al., 2005; Moghadam and Helbich, 2013). For most existing CA models,
the geographic space is typically represented as a regular raster grid and the
neighborhood is defined as an assembly of adjacent cells. However, recent
studies have demonstrated that the simulation results of such raster‐based CA
models are sensitive to the cell size and the neighborhood configuration (Moreno,
Wang, et al., 2009). Additionally, when the resolution is increased, spatial entities
in real world, such as blocks, census tract boundaries, and even individual
parcels, can be identified. The use of a grid of regular cells creates areas of
assumed homogeneous land use that may contain variability in reality, thereby
cannot precisely represent real entities with irregular sizes and shapes (Stevens
and Dragicevic, 2007).

The adoption of a vector‐based, or irregular‐based, CA method is one way to
avoid the questions mentioned above. V‐BUDEM, proposed by Zhang and Long
(2015), is a vector‐based CA urban growth model. It’s a constrained CA model,
which has considered various constraints during the urban growth process. The
conceptual model is shown as Equation 1.
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Where t
iV is the status at cell i of iteration t ; f is the transition rules of the

constrained CA. In the V‐BUDEM model, the parcel, with various shape and size,
is treated as the cell, and the cell status represents 0 for undeveloped or 1 for
developed from non‐urban built‐up parcel to urban built‐up parcel. The
neighborhood is defined as all parcels surrounding the cell within a certain
distance. Constrained conditions in the urban growth process consist of four
aspects, including self‐status constraints statusA , location constraints locA ,

government (or institutional) constraints govA , and neighborhood constraint neiA .

Locational and institutional constraints are assumed to remain static during the
future urban growth process, and they do not change across simulation
iterations. Self‐status (e.g. whether the parcel is agricultural land) constraints
can also be treated as keeping static, because the parcel will be excluded in the
simulation process if its self‐status has changed in previous iteration. The
neighborhood effect, however, continues to change with simulation iterations of
the constrained CA. The detailed information can be found in Zhang and Long
(2015).

2.3 Planner Agents

In this framework, Planner Agents are divided into three types: Non‐spatial
Planner Agent (NPA), Spatial Planner Agent (SPA) and Chief Planner Agent (CPA).
The NPA is responsible for formulating special plans such as for transport,
municipal public facilities and nature reserves, which correspond to data like
road network, public facilities and nature reserve zones. Special plans
formulated by NPAs are as parts of an urban master plan. The SPA is responsible
for establishing land use patterns. The SPA considers constraints of local
development conditions, and communicates and coordinates with the NPAs to
confirm formulated special plans that can support implementation of the
established land use pattern. The CPA is responsible for negotiating with the GA,
ensuring the rationality of comprehensive constraints, establishing the final land
use pattern based on an evaluation of established scenarios by several SPAs, then
determining it after the public participation process involving Resident Agent
(RA). When the CPA negotiates with the GA and RA, it’s on behalf of the planning
institution, not a planning bureau. Decision makers in the planning bureau, with
extensive research on their behavior and preference, are not accounted in this
paper that focuses on planners.

Planning rules (PRs) are defined as the criterias or guidelines of planner thinking
and action during the establishment process. The main content of PRs consists of
the planning impact factors (PIFs) considered by planner and their weights.
There are many PIFs for land use patterns, such as roads, rivers, parks and traffic
noise. Different planners with varying demands and inclinations will consider
different sets of PIFs, for which weights are usually different. The planner’s PRs
reflect his or her requirements and preferences. For example, whether to
consider the river and the determination of its weight for a residential parcel
pattern reflects the demands and inclinations of a riverfront development



strategy. To identify the PRs is crucial for the application of Planner Agents.
Theoretically, the PR identification can be realized through existing plan
drawings, questionnaire surveys, real models, or virtual reality tests. The flow of
LUPSA using Planner Agents is shown in Figure 2.

Figure 2. The flow diagram of LUPSA using Planner Agents

2.4 Agenter

Micro‐models using individual‐level data, such as agent‐based models (ABMs)
and micro‐simulation models, have been discussed increasingly in the context of
regional, urban, and population studies as supplements to traditional macro‐
models (Wu, Birkin, et al., 2008). However, the use of micro‐models has been
hindered by the poor availability of individual data due to privacy and cost
constraints. To rectify this hindrance, Long and Shen (2013) proposed Agenter to
disaggregate heterogeneous agent attributes and locations.



The probability distribution of an attribute (distribution) and the dependent
relationship among attributes (relationship) can be inferred from existing data
sources, including aggregate data, small‐scale surveys and empirical studies.
When it comes to non‐spatial attributes disaggregation, which we are focused on
in this paper, there are mainly two situations: known distribution information
and known relationship information. The first example is about known
distribution information: if the categories of the attribute marriage are married,
unmarried, and divorced, and the corresponding frequencies are 45, 20, and 35,
then 45 agents are married, 20 are unmarried, and 35 are divorced among every
100 individuals. The second example is about known relationship information:
For every 100 persons, the attribute age has two intervals, 18‐30 years old (40%)
and 31‐60 years old (60%). Its conditional probability with the attribute
marriage is known: out of all individuals 18‐30 years old, 60% are married and
40% unmarried. This means there will be 40%*60%*100 = 24 married persons
within the age range of 18‐30 and 40%*40%*100 = 16 unmarried persons are in
18‐30. Detailed explanation of Agenter can be found in Long and Shen (2013).

2.5 The location choice model

There are two processes for the location choice of each agent. Firstly, agent
chooses a residential parcel as his or her home place; then, agent chooses a
commercial or industrial parcel as his or her work place.

The most common residential location choice model used in practice is the
multinomial logit model (MNL). The basic logic of the MNL model is that
households are evaluated based on their own attributes, such as income and
household members. The sampling of available, vacant housing units and their
characteristics, such as price, density, and accessibility to service facilities were
considered. The relative attractiveness of these alternatives was measured by
their utility. The model then computed the probability that a given household
would select a given location from the available alternatives, defined as vacant
housing units, given the preferences and budget constraints of the households
seeking housing. This idea was borrowed and used to allocate agents into spaces
while considering each agent as a resident and each geographical space as a
housing market for residents to select. The agent location then depends on both
its non‐spatial attributes and related spatial layers in its environmental context.
For example, a residential agent’s socio‐economic attributes can influence its
preference for each type of spatial layer, such as the accessibility, amenities, and
landscape. Parcels have distinguished spatial attributes, and residential agents
with different preferences for spatial layers will select the parcel with the
greatest preference as their place of residence. This solution is expressed as
follows:

*ij ik kj ij
k

P W F r  (2)

Where, ijP is the preference of agent i for parcel j , kjF is the value of the

spatial layer k at parcel j , which can be calculated by overlaying the parcel with
the spatial layer in GIS; ikW is the preference coefficient of agent i for spatial



layer k , and ijr is the random item of agent i for parcel j . ijP is standardized to

range from 0 to 1.

An updated form of choice, the constrained choice solution allocates agents
using a residential location choice theory that obeys the statistical information of
agent spatial distribution. It differs from choice in that the number of agents with
the highest preference selected by a parcel is constrained by the statistical
information. For example, if the aggregate data indicate there are six agents in
parcel B, then parcel B can be used to select the top six agents with the highest
preference for this parcel, after evaluating preferences for all parcels by all
agents.

2.6 The travel mode choice model

The choice of travel mode is not only determined by the socioeconomic
characteristics of a resident but also by his or her commuting distance. The latter
can be elaborated as:

( , )j j jM f A Dist (3)

where jM is the commuting mode of resident j , jA are the socioeconomic

attributes of resident j , jDist is the commuting distance of resident j , and f is

the commuting mode choice function, which is used to determine the resident
j ’s commuting mode based on his or her socioeconomic attributes jA and

commuting distance jDist .

2.7 The EC‐EI calculation module

The commuting distance can be calculated from the results of residential location
choice and job location choice. Regarding the confirmed commuting mode of
each resident, the EC‐EI can be calculated using indicators for various
commuting modes. The EC‐EI on the whole city can be then calculated by
summing up all residents.

3. Virtual space test
3.1 Hypothesis

In this virtual space test, we tested a simplified version of our LCF‐PSS
framework. Main hypothesis is as follows:

1. The hypothetical space as a closed system has no transport link with outside regions.
Parcels in the city are square and identical in size. The road networks are grids with
no subway system. More specifically, there are 10×10 parcels in the virtual space,
and the length of each parcel is 1 km; the transport network (Figure 3) is of a
homogeneous grid shape (corresponds to the parcel boundary).



Figure 3. The virtual space

2. There are three land use types (R: residential, C: commercial, and O: other types).
The numbers of existing R and C parcels are 5 and 6, respectively. 25 R parcels and
15 C parcels are developed, namely there will be 30 R and 21 C parcels after the
establishment process of urban forms by planners.

3. The urban growth process is not considered at this stage;
4. Each urban form is established using Planner Agents, and the establishment process

contains land use allocation and urban density (FAR) distribution. The Existing PRs
are known (Table 1). Land use type constraints consist of R (land use type is
constrained to be R), C, R&C, and no constraint. Existing R and C parcels remain
unchanged. For density distribution, no constraint has been considered. The school
plan, road plan and central business district (CBD) location, which correspond to
PIFs, are special plans formulated by NPAs.

Table 1. Planning rules

weight

factor

The PRs for land use allocation
(LUA_PRs)

The PRs for urban density
distribution (UDD_PRs)

LUA_PR1 LUA_PR2 UDD_PR1 UDD_PR2

R C O R C O R C R C

High
school

0.5 0.3 0.2 0.5 0.4 0.1 0.5 0.5 0.6 0.4

Town
center

0.3 0.4 0.3 0.3 0.5 0.2 0.6 0.4 0.3 0.7

Main
road

0.5 0.4 0.1 0.4 0.5 0.1 0.2 0.8 0.5 0.5

5. Agent data is directly from the generation of Agenter, which has been done by Long
and Shen (2013). The agents exclude those don’t commute (such as children and the
seniors older than 65).

6. A R or C parcel with a floor‐area ratio (FAR) of 1 corresponds to one resident living
or working in the parcel.

7. Every resident works and commutes.
8. Only job‐housing commuting EC‐EI is counted for residents; household,

entertainment, shopping, and other types of energy consumed are excluded.
9. Residents choose the residential parcel randomly; residents choose the closest

working parcel to work; both are not related to their socioeconomic attributes.
10. Three types of commuting modes are considered: car, bus, and biking/walking. To

simplify the agent’s mode choice process, we adopted a decision tree. Supposing the



commuting mode M is related to the resident’s monthly I (unit: CNY) and
commuting distance Dist (unit: km), the decision tree is expressed as follows:

 5000 and 4 :

  

 3 :

  

:

    

if I Dist

M Car

elif Dist

M Bus

else

M Biking or Walking

 









This decision tree rule is generated from the household travel surveys of
Beijing conducted in 2005.The transport EC‐EI indicators are shown in Table 2.

Table 2. Transport EC‐EI indicators for various modes

ID Travel mode Consumed energy per kilometer
per capita

Environmental impact per
kilometer per capita

1 Car 10 10

2 Bus 2 1

3 Bike or walk 0 0

3.2 Results

This LCF‐PSS framework can be developed using Python language and ArcGIS
software.

Firstly, we established four urban forms using two LUA_PRs and two UDD_PRs
based on existing special plans, land increase demand and land use type
constraints. The established scenarios are shown in Figure 4. Scenario 1 and 2
were formulated using LUA_PR1 and UDD_PR1 & UDD_PR2, while Scenario 3 and
4 were established using LUA_PR2 and UDD_PR1 & UDD_PR2. Therefore, the
land use distribution of Scenario 1 and 2 (or Scenario 3 and 4) are the same, and
the FAR distribution of Scenario 1 and 3 (or Scenario 2 and 4) are the same.
Taking Scenario 1 and 4 as examples, the residential center (where the R FAR is
relatively high) is located in northeastern corner of Scenario 1, and in
northeastern corner of Scenario 4 (distributed more dispersedly); the working
center (where the C FAR is relatively high) is mainly located in the middle part of
Scenario 1, and in the middle and southern part of Scenario 4.



Scenario 1 Scenario 2

Scenario 3 Scenario 4
Figure 4. Established four urban forms

Secondly, we got 2000 agents randomly from the generated database from Long
and Shen (2013). Their data contains 13.819 million agents in the Beijing
Metropolitan Area, and synthesized by using the Fifth Population Census Report
of the BMA conducted in 2000 and the Household Travel Survey of Beijing
conducted in 2005. To get 2000 agents who work and commute, we narrowed
the original database using the age constraint (aging from 20 to 65). The sample
information of these agents are shown in Table 3.



Table 3. Socio‐economic information of five sample agents

Agent ID Age Sex Marriage Education Job Income Family
number

193392 36 male married junior
high/middle
school

production,
transport
equipment
operator,
and related

2385 three
persons

19831 41 female married high school production,
transport
equipment
operator,
and related

5966 three
persons

37094 61 male married high school professional
technology
employee

4744 three
persons

49808 21 male unmarried junior
high/middle
school

business
and service
employees

2684 five
persons

165014 27 male unmarried high school business
and service
employees

5559 five
persons

Thirdly, each parcel found a certain number of agents to live, and then each
agent found a closest parcel to work. Both of these two process were constrained
by the parcel’s FAR value.

Finally, each agent chose a travel mode based on the decision tree shown in
Section 3.1. Based on the choice, the corresponding EC‐IC of this agent can be
calculated by the indicators in Table 2. The final statistical results of EC‐IC are
shown in Table 4, in which the total distance is the total commuting distance for
the whole scenario. According to Table 4, the LCF is definitely Scenario 1 for it
has the shortest total commuting distance, the least energy consumption and
environmental impact. Simultaneously, the Scenario 4 is the one having the most
energy‐consuming, environment‐negative, and causing the longest commuting
distance.

Table 4. The EC‐EI calculation results for four scenarios

Scenarios

Aspects

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Total distance 10915 11217 12368 14326

Energy consumption 82848 85228 98776 117746

Environmental impact 80579 82999 96213 115023

To illustrate the calculation results more clearly, Figure 5 shows the spatial
distribution of average energy consumption and environmental impact of urban
form scenario 1 and 2. In Scenario 1, the highest amount of energy consumption
is 10612, while the lowest is 54. In Scenario 2 the highest amount of energy
consumption is 9094, while the lowest is 9. The highest amount of
environmental impact is 10311, and the lowest is 42 in Scenario 1, while the
highest amount of energy consumption is 8922, and the lowest is 4 in Scenario 2.



The facts show that although Scenario 1 is regarded as a LCF, the variance of the
energy consumption and environmental impact in Scenario 2 is less than that in
Scenario 1. Additionally, comparing the spatial distributions of energy
consumption and environmental impact, we found that there are relatively
similar, which implies the more energy consumed in a parcel, the more
environmental impact created at the same time.

Scenario 1

Scenario 2
Figure 5. Simulation results of EC‐EI for Scenario 1 and 2.

4. Conclusion
The paper proposed a LCF‐PSS framework for supporting the achieving a low
carbon form in cities by quantitatively calculating transport energy consumption
and the corresponding environmental impact (EC‐EI). There are several
advantages or highlights for this simulation framework. Firstly, it identifies the
quantitative relationship between urban form and EC‐EI in a manner of inner‐
city analysis using synthesized individual person as the agent and the urban
parcel as the basic spatial unit; this kind of analysis is not possible for
conventional researches focusing on the level of cities as a whole. Secondly,
several dominant bottom‐up methods, such as Cellular Automata (CA), and
Multi‐agent system (MAS), are included and make the framework more
comprehensive. Thirdly, it can be used to evaluate planning alternatives, and
provide a positive reference for urban planners to achieve or establish low
carbon urban forms. And finally, it’s also meaningful for policy makers to make
relevant urban policies to support the creation of the LCF in cities.



In the preliminary study, we tested a simplified framework to calculate EC‐EI in a
virtual space. In this test, we considered three land use types (R, C, and O) and
constraints condition in the establishment process of land use allocation. There
were 2000 agents adopted; each agent has various socio‐economic attributes.
Agents randomly chose a R parcel to live, and chose a closest C parcel to work;
both choices were constrained to parcel’s FAR value. Additionally, the travel
mode was decided according to socio‐economic attributes of agents and
commuting distance. After all of these, the EC‐EI was calculated for each agent
based on the travel model adopted, determined EC‐EI indicator for the travel
model, and travel distance, and the EC‐EI of an urban form was calculated by
summing EC‐EI of all agent. Finally a LCF was found by comparing the EC‐EI of all
urban forms. Results shown the feasibility of LCF‐PSS for finding out the low
carbon urban form.

In next step, the research of the LCF‐PSS framework may be improved in the
following aspects. Firstly, we can test it in a real situation. We already have
generated the whole population in Beijing in 2000, and done the application of
urban growth simulation using V‐BUDEM model and urban form establishment
using Planner Agents framework; the next stage is to apply this framework to
calculate commuting EC‐EI in the whole Beijing. Secondly, school, entertainment
travels can be included in the calculation process. Thirdly, the choice of living
and working places can be based on constrained multinomial logit choice model,
which will consider the impact of agents’ socio‐economic attributes in the
process. And finally, we can calculate the amount of CO2 emission based on the
real values, which can be found in relevant literature (Ma, Heppenstall, et al.,
2014).
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