

北京城市实验室 Beijing City Lab

ID of the slides

56

Slides of BCL

www.beijingcitylab.com

How to cite

Author(s), Year, Title, Slides at Beijing City Lab, http://www.beijingcitylab.com

E.g. Long Y, 2014, Automated identification and characterization of parcels (AICP) with OpenStreetMap and Points of Interest, Slides at Beijing City Lab, http://www.beijingcitylab.com

2 Literature Review

- Cognitive Mapping Stream
- the image of the city (1960s)
- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

3 Method Statement

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

C-IMAGE as Urban Form Identification

Google Glass by Matthew Clarke, Security Camera by iconoci, iPhone by Jason Schmitt, and iPad by Edward Boatman from The Noun Project

How to extract and understand the holistic image of the city from the public?

如何从公众中提取他们对于城市的全局意象并加以理解?

- 1) How to extract the holistic cognition and collect the scattered perceptions from the public through modern techniques?
- 2) How to apply the abstracted knowledge relates to practical objects, such as urban form, function, or activities?

2 Literature Review

- Cognitive Mapping Stream
- the image of the city (1960s)
- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

3 Method Statement

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

C-IMAGE as Urban Form Identification

C-IMAGE:

To Collaborate Crowd-sourcing data and Create City's Cognition from the Citizens with Computation technology.

2 Literature Review

- Cognitive Mapping Stream
- the image of the city (1960s)
- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

3 Method Statement

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem

The Boston Image derived from Verbal Interviews, The Image of the City (Kevin Lynch, 1960, P146)

- 1) 基于手绘与访谈的心灵地图(Mental Map)
- 构成城市意象的五要素
- 3) 在规划实践领域被广泛应用 4) 消耗大量的人力与时间成本

小结: 该传统的城市意象方法为 this conventional city image theory sets a complete example in using cognitive mapping to study public perceptions towards city. But it is relatively low efficient comparing to today's producing rate based on modern technology.

2 Literature Review

- Cognitive Mapping Stream
- the image of the city (1960s)
- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

3 Method Statement

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem

The Collaborative Image of The City: Mapping the Inequality of Urban Perception, Philip Salesses, Katja Schechtner, Cesar A. Hidalgo, 2013

- 1) geo-tagged photos (google street)
- 2) online survey
- 3) safety, class and uniqueness
- 3) still relatively low efficient (it may take many years)

Summary: this project used google street views as its research object and online voting techniques to measure the Inequality of city's perceptions

- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream

City Pulse Project

What makes Paris look like Paris

3 Method Statement

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
 - 102 Attributes to seven Urban Perceptions
 - Typology from the seven-perception C-IMAGE

How to access the subjective cognition of physical environment? (access)

客观环境的主观认知 photos > texts:

closer to perception, no language barrier, no vague words

human-taken photos > machine-taken photos:

cognition of personal preference, wider coverage

- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
 - C-IMAGE and Traditional 5 elements
 - Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE

- 1) find the city boundary and cut into 500 X 500 meter cell
- 2) send request, and receive Json file to retrieve the data
- 3) typical data information: upload_date, owner_name, owner_id, photo_id, longitude, latitude, height, width, photo_title, owner_url, photo_url, photo_file_url

Summary: C-IMAGE has downloaded 26 cities covering North America, Asia, Europe, with over 2 million photos

- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
 - C-IMAGE and Traditional 5 elements
 - Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE

To see the complete plots of the cities from here: http://liuliu.us/projects/cimage/city-gallery/

- 1) find the city boundary and cut into 500 X 500 meter cell
- 2) send request, and receive Json file to retrieve the data
- 3) typical data information: upload_date, owner_name, owner_id, photo_id, longitude, latitude, height, width, photo_title, owner_url, photo_url, photo_file_url

Summary: C-IMAGE has downloaded 26 cities covering North America, Asia, Europe, with over 2 million photos (thesis p35)

- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
 - C-IMAGE and Traditional 5 elements
 - Comparison with the City Problem
 Map
 - Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE

To see the complete plots of the cities from here: http://liuliu.us/projects/cimage/city-gallery/

- 1) find the city boundary and cut into 500 X 500 meter cell
- 2) send request, and receive Json file to retrieve the data
- 3) typical data information: upload_date, owner_name, owner_id, photo_id, longitude, latitude, height, width, photo_title, owner_url, photo_url, photo_file_url

Summary: C-IMAGE has downloaded 26 cities covering North America, Asia, Europe, with over 2 million photos (thesis p35)

7

- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream
- City Pulse Project
- What makes Paris look like Paris

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
 - C-IMAGE and Traditional 5 elements
 - Comparison with the City Problem
 Map
 - Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE

To see the complete plots of the cities from here: http://liuliu.us/projects/cimage/city-gallery/

- 1) find the city boundary and cut into 500 X 500 meter cell
- 2) send request, and receive Json file to retrieve the data
- 3) typical data information: upload_date, owner_name, owner_id, photo_id, longitude, latitude, height, width, photo_title, owner_url, photo_url, photo_file_url

Summary: C-IMAGE has downloaded 26 cities covering North America, Asia, Europe, with over 2 million photos (thesis p35)

10

- the psychological maps (1970s)
- the evaluative image (1990s)
- Computation Stream

City Pulse Project

What makes Paris look like Paris

3 Method Statement

- Research Objects
- texts vs. photos
- machine-taken photos vs. humantaken photos
- social net-work based provider vs. geolocation-based provider
- Acquisition of Data
- preparations
- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

4 Application

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE

- 1) find the city boundary and cut into 500 X 500 meter cell
- 2) send request, and receive Json file to retrieve the data

To see the complete plots of the cities from here: http://liuliu.us/projects/cimage/city-gallery/

3) typical data information: upload_date, owner_name, owner_id, photo_id, longitude, latitude, height, width, photo_title, owner_url, photo_url, photo_file_url

Summary: C-IMAGE has downloaded 26 cities covering North America, Asia, Europe, with over 2 million photos (thesis p35)

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

How to apply the abstracted knowledge to urban problems? (detecting city changes, planning strategies)

Path (the channels along which the observer customarily, occasionally, or potentially moves): Lines Edge (seams, lines along which two regions are related and joined together): Lines (not often)

Node (spots entitled with unique means, function, or any other uniqueness that enhance its sense of existence): Clusters **Landmark** (external presence with physical shapes such as buildings, sculptures, or mountains): Clusters, needs image content analysis

District (medium to large sections of the city, conceived of as having two-dimensional entent): not clearly defined, no clear match(Dense areas or Clusters)

Summary: C-IMAGE is partially comparable to Lynch's "City Image", but particularly difficult in identifying district.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

- The upper lay is the map of problems in the Image of Boston (Kevin Lynch, 1960, P146)
- 1) all the changes in image is a reflection of urban changes during the past six decades
- 2) most of the difference in the comparison can link to a specific planning activity, e.g. Prudential, Big Dig
- 2) some planning activities may not lead to an improvement from the comparison, e.g. West End
- 3) some changes have improved the perceptional environment without being led by an agent, e.g. Southwest Corridor Park

Summary: C-IMAGE is able to detect urban changes both from agent-led and agent-less basis.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

1) all the changes in image is a reflection of urban changes during the past six decades

- 2) most of the difference in the comparison can link to a specific planning activity, e.g. Prudential, Big Dig
- 2) some planning activities may not lead to an improvement from the comparison, e.g. West End
- 3) some changes have improved the perceptional environment without being led by an agent, e.g. Southwest Corridor Park

Summary: C-IMAGE is able to detect urban changes both from agent-led and agent-less basis.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

Newbury Street

"During the past decades, Newbury street has developed its distinctive character that makes it one of the most elegant streets in Boston" (The city observed, Boston: a guide to the architecture of the hub, Lyndon & Wingwall, 1982)

Summary: Such agent-less changes often take time and C-IMAGE is ideal monitor to witness its birth.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

Southwest Corridor Park

"The Boston Southwest Corridor began as a highway project and ended as a community design project." (The Quality of Participatory Design: The effects of Citizen Input on the Design of the Boston Southwest Corridor, Crewe, 2001)

Summary: The comparison from C-IMAGE provides a direct support to the quality of participatory design.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & **Activities Identification**
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

"Recognizing City Identity via Attribute Analysis of Geo-tagged Images" Bolei Zhou, Liu Liu, Aude Oliva, Antonio Torralba **Computer Vision - ECCV 2014**

To see the complete plots of the cities from here: http://wednesday.csail.mit.edu/cityimage/cimage/result_plot/

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & **Activities Identification**
- 102 Attributes to seven Urban **Perceptions**
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

case of Boston

How to materialize the information from that cognition? (extract)

To see the complete plots of the cities from here: http://wednesday.csail.mit.edu/cityimage/cimage/result_plot/

SUN attribute database: consists of 102 scene attributes labeled on 14,340 images from 717 categories from it ImageNet \rightarrow Deep convolutional network \rightarrow 4096 deep learning features (vector) \rightarrow SVM classifier (lib SVM)

Summary: through this technology, all the photos are tagged with a 102 dimensional vector indicating which scene its content belongs to.

18

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

How to materialize the information from that cognition? (extract)

SUN attribute database: consists of 102 scene attributes labeled on 14,340 images from 717 categories from it ImageNet —> Deep convolutional network —> 4096 deep learning features (vector) —> SVM classifier (lib SVM)

Summary: through this technology, all the photos are tagged with a 102 dimensional vector indicating which scene its content belongs to.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
 - C-IMAGE and Traditional 5 elements
 - Comparison with the City Problem Map
 - Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

Green Perception: this is the most frequent scene, including a wide variety of categories such as vegetation, trees, etc.

Water Perception: it refers to photos that contain a large proportion of water in their contents.

Transportation Perception: it means photos contains vehicles.

High-rises Perception: it only stands for an impression of high buildings, not definitely related to the real height of the building.

Architecture Perception: mostly it is representing historical buildings or traditional characterized buildings, such as churches.

Socializing Perception: this category means photo that are related with a wide range of activities varying from a small group to larger ones.

Athletic Perception: in theory, it is a subset of socializing activities but sometimes it will be treated as green space.

Summary: The principle to the generalization is based on 1) to be related to urban contents, and 2) distinguishable with others

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

Green Perception: this is the most frequent scene, including a wide variety of categories such as vegetation, trees, etc.

Water Perception: it refers to photos that contain a large proportion of water in their contents.

Transportation Perception: it means photos contains vehicles.

High-rises Perception: it only stands for an impression of high buildings, not definitely related to the real height of the building.

Architecture Perception: mostly it is representing historical buildings or traditional characterized buildings, such as churches.

Socializing Perception: this category means photo that are related with a wide range of activities varying from a small group to larger ones.

Athletic Perception: in theory, it is a subset of socializing activities but sometimes it will be treated as green space.

Attitude i electroni in theory, it is a subset of sociatizing activities but sometimes it witt be treated as green space.

Summary: The principle to the generalization is based on 1) to be related to urban contents, and 2) distinguishable with others

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless Changes
- C-IMAGE as Urban Function & **Activities Identification**
- 102 Attributes to seven Urban **Perceptions**
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

case of London

Green Perception

To see the complete plots of the cities from here: http://wednesday.csail.mit.edu/cityimage/cimage/result_plot/cityAttribute/

Transportation Perception

Athletic Perception

22

Socializing Perception

Green Perception: this is the most frequent scene, including a wide variety of categories such as vegetation, trees, etc. Water Perception: it refers to photos that contain a large proportion of water in their contents.

Transportation Perception: it means photos contains vehicles.

Water Perception

High-rises Perception: it only stands for an impression of high buildings, not definitely related to the real height of the building. Architecture Perception: mostly it is representing historical buildings or traditional characterized buildings, such as churches. Socializing Perception: this category means photo that are related with a wide range of activities varying from a small group to larger ones. Athletic Perception: in theory, it is a subset of socializing activities but sometimes it will be treated as green space.

High-rises Perception

Architecture Perce

Summary: The principle to the generalization is based on 1) to be related to urban contents, and 2) distinguishable with others

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the sevenperception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

Infographics based on the seven-category of image contents

- 1) Green Perception Dominated City: it refers to cities full of green perceptions in its center.
- 2) Green and High-rises Separated City: it means the high-rises perceptions and green ones are concentrated separately.
- 3) Green and High-rises Perceptions mixed City: the cities are mixture of both green perceptions and high-rises perceptions.
- 4) High-rises Perception dominated City: it is mostly covered by high-rises perpections overwhelmingly.

Summary: According to the seven categorized C-IMAGE, cities display different types in its holistic perception.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem
 Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

top right image sources: http://skyblueskye.com/wp-content/uploads/2013/03/DSCN0084.jpg

bottom left image source: http://www.panoramio.com/photo/95511176

bottom right image source: http://www.panoramio.com/photo/5844316

33

Shanghai vs. Tokyo 上海 vs 东京

Similarities: huge population, heavy density, close to ocean, temperature, and GREEN SPACE PER PERSON (Shanghai, 18.1 [2008] > Tokyo, 10.6 [2005])

Difference: 1) planning structures 2) planning strategies 3) planning systems

Summary: C-IMAGE can evaluate the real level of contribution derived from different plans, which cannot be measured by traditional index.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

Shanghai vs. Tokyo 上海 vs 东京

Similarities: huge population, heavy density, close to ocean, temperature, and GREEN SPACE PER PERSON (Shanghai, 18.1 [2008] > Tokyo, 10.6 [2005])

Difference: 1) planning structures 2) planning strategies 3) planning systems

Summary: C-IMAGE can evaluate the real level of contribution derived from different plans, which cannot be measured by traditional index.

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

世纪公园 (1:6000)

东京日比谷公园 (1:6000)

Shanghai vs. Tokyo 上海 vs 东京

Similarities: huge population, heavy density, close to ocean, temperature, and GREEN SPACE PER PERSON (Shanghai, 18.1 [2008] > Tokyo, 10.6 [2005])

Difference: 1) planning structures 2) planning strategies 3) planning systems

Summary: C-IMAGE can evaluate the real level of contribution derived from different plans, which cannot be measured by traditional index.

35

- download from Panoramio via its data API
- download from Flickr via its photo search API
- storage and maintenance

- C-IMAGE as Urban Form Identification
- C-IMAGE and Traditional 5 elements
- Comparison with the City Problem Map
- Agent-led Changes vs. Agentless
 Changes
- C-IMAGE as Urban Function & Activities Identification
- 102 Attributes to seven Urban Perceptions
- Typology from the seven-perception C-IMAGE
- Tokyo vs. Shanghai

5 Conclusion

- Limitations
- Key Moments
- Further Study

Shanghai vs. Tokyo 上海 vs 东京

Similarities: huge population, heavy density, close to ocean, temperature, and GREEN SPACE PER PERSON (Shanghai, 18.1 [2008] > Tokyo, 10.6 [2005])

Difference: 1) planning structures 2) planning strategies 3) planning systems

Summary: C-IMAGE can evaluate the real level of contribution derived from different plans, which cannot be measured by traditional index.

