
Extending ArcGIS with Python
USGS GIS Workshop, May 10-11th, 2011

Drew Flater - Esri

Does this describe you?

• Comfortable using ArcGIS, geoprocessing, but want

to become more efficient

• Some experience with Python, or other language

• Want to pick up some tips & tricks

• Ask the question What else? – extend ArcGIS to do

things that are not “in the box”

Agenda

• Python scripting essentials

- Why use Python scripting?

- Python 101

- What is ArcPy?

- Executing geoprocessing tools

- Creating workflows

• Batch Processing

- Listing data

• Reading and Creating Data

- Describe

- Cursors

• Spatial Analyst module

- Functions

- Map algebra

- Raster classes

• Map Automation

- ArcPy Mapping module

- Repair broken data sources

- Create map books

• Creating script tools

Python Scripting Essentials

Why use Python scripting?

• Scripting language of ArcGIS

• Free, cross-platform, easy to learn,

established community

• But why? Other ways to run tools

• Develop, execute, and share

geoprocessing workflows

• Improve productivity

Python 101

• Where do I write Python code?

- IDE like PythonWin; Python window in ArcGIS

• Which lines will run?

• What are variables?

- A name that stores a value; assigned using =

I am a comment, I will not execute

import arcpy

input = “C:/Data/roads.shp”

distance = 50

both = [“C:/Data/roads.shp”, 50]

Variables act as substitutes for raw values

arcpy.Buffer_analysis(input, “output.shp”, distance)

Python 101

• Python has logic for testing conditions

- if, else statement

- Colon at end of each condition

- Indentation determines what is executed

- == tests equality; other operators like >, <, !=

var = “a”

if var == “a”:

Execute indented lines

print “variable is a”

else:

print “variable is not a”

Python 101

• Techniques for iterating or looping

- While loops, counted loops, list loops

- Colon at end of statement

- Indentation determines what is executed

x = 1

while x < 5:

print x

x = x + 1

for num in range(1,5):

print num

x = [1, 2, 3, 4]

for num in x:

print num

Python 101

• Case sensitivity

- Variables, functions, etc. are case sensitive

- name „X‟ is not defined, function „X‟ does not exist

• For paths, use forward-slash as separator
“C:/Data/Roads.shp”

• Functions & Modules

- Function: a defined piece of functionality that performs

a specific task; requires arguments ()

- Module: a Python file where functions live; imported

- math.sqrt(100) … 10.0

- “There‟s a module for that!”

ArcPy

• The access point to geoprocessing tools

• A package of functions, classes and modules, all

related to scripting in ArcGIS

- Functions that enhance geoprocessing workflows

(ListFeatureClasses, Describe, SearchCursor)

- Classes that can be used to create complex objects

(SpatialReference , FieldMap objects)

- Modules that provide additional functionality

(Mapping ,SpatialAnalyst modules)

• Builds on arcgisscripting module (pre-10.0)

ArcGIS Python window

• Embedded, interactive Python window within

ArcGIS

- Access to ArcPy, any Python functionality

• Great for experimenting with Python and learning

tool syntax

Executing a tool in Python

• ArcPy must be imported

• Follow syntax: arcpy.toolname_toolboxalias()

• Enter input and output parameters

Import ArcPy

import arcpy

Set workspace environment

arcpy.env.workspace = ”C:/Data”

Execute Geoprocessing tool

arcpy.Buffer_analysis(“Roads.shp", “Roads_buffer.shp",

“50 Meters”)

Getting tool syntax

• Results window, „Copy as Python Snippet‟

• Export Model to Python script

• Drag tool into Python window

• Tool documentation

• arcpy.Usage(“Buffer_analysis”)

Setting environments in Python

• Accessed from arcpy.env

• Provides finer control of tool execution; makes

scripting easier

• Common environments:

- Workspace, coordinate system, extent

arcpy.env.workspace = “C:/Data”

arcpy.env.extent = “0 0 100 100”

Scripting Geoprocessing Tools
Exercise 1

10 min

• Use the result object

• Returned by geoprocessing tools

• Maintains messages, parameters, and output

Tips & Tricks

Use Select and Buffer tools

select = arcpy.Select_analysis(veg, "select“)

buffer = arcpy.Buffer_analysis(roads, “buffer”, “75 Feet”)

Erase the output of Buffer from the output of Select

erase = arcpy.Erase_analysis(select, buffer, “erase")

Batch Processing

ArcPy functions

• Perform useful scripting tasks

- List data to aid batch

processing

(ListFeatureClasses, 12 total

List functions)

- Getting data properties

(Describe)

- Etc.

• Supports automation of

manual tasks

Batch processing

• Run a geoprocessing operation multiple times with

some automation

- Example: Using the Clip tool to clip every feature class

in a workspace to a boundary

• List functions used in Python

to perform batch processing

ListFeatureClasses

Set the workspace

arcpy.env.workspace = “C:/Data/FileGDB.gdb/FDs"

Get a list of all feature classes

fcList = arcpy.ListFeatureClasses()

Print the list of feature classes one at a time

for fc in fcList:

print fc

Batch Processing
Exercise 2

5 min

• Use string formatting in Python to easily

combine strings with other strings (or other types)

• Placeholder using %

• %s : convert item to string, then replace

Tips & Tricks

Clip each feature class, name it according to the input

for fc in fclist:

arcpy.Clip_analysis(fc, "StudyArea",

"Clipped/%s_clip" % fc)

Reading and Creating Data

Reading Data Properties

• Describe function

- Returns an object with properties

• Allows script to determine properties of data

- Data type (shapefile, coverage, network dataset, etc.)

- Shape type (point, line, polygon)

- Shape field name

- Etc.

Describe a feature class

desc = arcpy.Describe(“C:/Data/roads.shp")

print desc.shapeType

>>> “Polyline”

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html

Reading Data Values and Geometry

• ArcPy cursors used to access table records

- Iterate through each record

- Retrieve field values of tables, feature classes, rasters

- Get geometry of feature class features

Cursor Explanation

SearchCursor Read-only access to field values,

geometry

UpdateCursor Update or delete field values,

geometry (write-access)

InsertCursor Add new records to a table or feature

class; write field values and geometry

Cursors

• SearchCursor

• UpdateCursor

scur = arcpy.SearchCursor(“C:/Data/Roads.shp”)

for row in scur:

print row.getValue(“Name”)

ucur = arcpy.UpdateCursor(“C:/Data/Sites.shp”)

for row in ucur:

log = math.log(row.getValue(“Num”))

row.setValue(“Log”, log)

ucur.updateRow(row)

Reading Geometry

• Feature classes have a geometry field

- Typically (but not always) named Shape

• Returns a geometry object

- Has properties that describe the feature

- area, length, isMultipart, partCount, pointCount, type, ...

• Geometry objects can often be used in place of

feature classes

Buffer each feature to a new feature class

for row in arcpy.SearchCursor("C:/data/Roads.shp"):

feature = row.getValue(“Shape”)

name = row.getValue(“Name”)

arcpy.Buffer_analysis(feature, “buffer_%s” % name,
“100 Feet”)

Cursors (creating new data)

• InsertCursor used to add new rows, features

- Insert values into attribute fields

- Insert geometries into shape field

icur = arcpy.InsertCursor(“C:/Data/Cities.shp”)

row = icur.newRow()

row.setValue(“City”, “Denver”)

row.setValue(“Shape”, arcpy.Point(-104.98, 39.74))

icur.insertRow(row)

ArcPy Cursors
Exercise 3

10 min

• Clean up cursors using a try, except, finally
statement

• Cursors can keep a lock on data

Tips & Tricks

scur = arcpy.SearchCursor(“C:/Data/Roads.shp”)

try:

for row in scur:

print row.getValue(“Name”)

except:

raise

finally:

if scur:

del scur

Spatial Analyst Module

Spatial Analyst Module

• from arcpy.sa import *

• Includes all Spatial Analyst tools

• Integrates Map Algebra into Python

- Defines geographic analysis as algebraic expressions

- Supports mathematical, relational, other operators

- Output on the left-side

• Helper classes that can be used to support complex

parameter

demm = Raster("DEM") / 3.28

slpdeg = Slope(demm, "DEGREE")

demfs = FocalStatistics(demm, NbrRectangle(3,3), "MEAN")

Raster Class

• Used as input to tools and map algebra expressions

• Reference to raster on disk, created in two ways:

- Returned output from Spatial Analyst functions

- Cast using Raster() function

• Creates a temporary raster dataset that must be

saved to be made permanent

• Has properties and method

- raster.minimum, raster.format, raster.extent, etc.

- raster.save()

Raster Integration

• NumPy is a 3rd party Python library for numeric or

mathematical computing

- A powerful array object

- Sophisticated analysis capabilities

- NumPy arrays used in other packages like SciPy

• Rasters can be converted to NumPy arrays

- RasterToNumPyArray(), NumPyArrayToRaster()

Raster to NumPy Array

• Example: Correlation Coefficient between two Rasters

Find the correlation between Temperature and
Barometric Pressure

Convert Temperature and Pressure rasters to arrays

tempArray = arcpy.RasterToNumPyArray(“Temperature")

presArray = arcpy.RasterToNumPyArray(“Baro_Pressure")

Flatten the arrays

tempArray.ravel()

presArray.ravel()

Print the correlation matrix

print numpy.corrcoef(tempArray, presArray)

>>> [[1.0 0.98]

[0.98 1.0]]

There is a 0.98 correlation coefficient (R)

Spatial Analyst module
Exercise 4

10 min

ArcPy Mapping module

ArcPy Mapping module

• Module that contains functions, classes used to

automate mapping tasks

- Manage map documents, layer files, and the data within

- Find and fix broken data sources

- Update a layer‟s symbology across many MXDs

- Export and print map documents

- Map production/map series

ArcPy Mapping module

• MapDocument object is essential

- References mxd on disk; has methods and properties

• Needed to perform most mapping tasks

- MapDocument as input to function

OR

- Functions called from MapDocument

md = arcpy.mapping.MapDocument(”C:/Maps/NtlParks.mxd”)

Set map document properties

md.description = “Map of National Parks”

List layers in the map

maplayers = arcpy.mapping.ListLayers(md)

Fix Data Sources

md.replaceWorkspaces(….)

Export the map to PDF

arcpy.mapping.ExportToPDF(md, “C:/Maps/NtlParks.pdf”)

ArcPy Mapping module
Exercise 5

10 min

ArcGIS Script Tools

Script Tools

• Script tools are the best way to

create and share custom

geoprocessing functionality

• More people know how to run a

tool than a Python script

• Source is a script

• It is a tool

• Use in ModelBuilder, scripts

• Has inputs, outputs; generic

• Communicates with application

• Layers added to map

• Messages

• Vehicle to serve geoprocessing

tasks through ArcGIS Server

Creating an ArcGIS Script Tool
Exercise 6

5 min

Python Scripting Resources

• ArcGIS Resource Centers

- resources.arcgis.com

- Online documentation

- Geoprocessing Resource Center:

script gallery, blog, presentations

• Python References

- Learning Python by Mark Lutz

- Core Python Programming by

Wesley J. Chun

• Python Organization

- python.org

http://resources.arcgis.com/
http://www.python.org/

Esri Training for Python

esri.com/training

• Instructor-Led Course

- Introduction to Geoprocessing Scripts Using Python

• Web Course

- Using Python in ArcGIS Desktop 10

http://training.esri.com/gateway/index.cfm?fa=catalog.courseDetail&CourseID=50121644_10.x
http://training.esri.com/gateway/index.cfm?fa=catalog.courseDetail&CourseID=50121644_10.x
http://training.esri.com/gateway/index.cfm?fa=catalog.courseDetail&CourseID=50121644_10.x
http://training.esri.com/gateway/index.cfm?fa=catalog.courseDetail&CourseID=50121644_10.x
http://training.esri.com/gateway/index.cfm?fa=catalog.courseDetail&CourseID=50121644_10.x
http://training.esri.com/acb2000/showdetl.cfm?DID=6&Product_ID=971
http://training.esri.com/acb2000/showdetl.cfm?DID=6&Product_ID=971

