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    Chapter 13   
 Big Models: From Beijing to the Whole China       

13.1                   A Golden Era of Big Models 

 Applied regional/urban models have attracted extensive attention from researchers 
in recent decades. Regional models are used for regional analysis and simulation at 
a macro-geographic level, such as for a collection of cities or a whole country, 
which generally involve a variety of spatial analysis approaches and statistical 
methods. On the contrary, urban models rely more on modeling and simulation 
approaches (Batty  2009 ). They are commonly used for understanding and predict-
ing urban systems through abstracting and generalizing different components of a 
city. Urban models were fi rstly developed in the early 1950s and experienced sev-
eral phases as they developed and evolved. Figure  13.1  presents the development 
line of urban models from static to dynamic models. The dynamic models further 
include top-down differential equation-based models and currently prevailing bot-
tom- up models using cellular automata or agent-based approaches. The spatial unit 
of urban models is also in a transition from a larger geographical unit such as a large 
grid or a zone to a smaller unit such as a block, a parcel, or even a building (Hunt 
et al.  2005 ; Wegener  2004 ). Generally, these two types of models are utilized sepa-
rately. According to existing research on applied regional/urban models, they are 
rarely used simultaneously or synthetically.

   In practice, the existing applied regional/urban models can fall into two clusters 
based on their geographical scale and spatial unit. One is a fi ne-scaled model for a 
small area, e.g. part of a city or an entire city. The modeling spatial unit can be a 
parcel, a block, or a small cell. The other is a model for a large area, such as a region 
or an entire country. The modeling unit can be a county or a super cell. Because 
there is a general tradeoff between the spatial extent and the resolution due to the 
data paucity, it is hard to develop a model that can be applied to a large geographic 
extent but with a small spatial unit (see Fig.  13.2 ).
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   To the best of our knowledge according to extensive literature review, fi ne-scale 
applied urban models for a large area have been rare in academic research. As 
explained earlier, this stems largely from the lack of data and computation capacity 
limitation, which are particularly common in the case of China. In addition, collect-

  Fig. 13.1    The development line of Applied Urban Models (Adapted from Paul Waddell, Dynamic 
Microsimulation: UrbanSim, Webinar 5 of 8-part TMIP, Webinar series on land use forecasting 
methods)       

  Fig. 13.2    Conventional models vs. “big models” (MVP-CA, a mega-vector-parcels cellular 
automata model, is our fi rst big model for simulating urban expansion at the parcel level for all 
Chinese cities)       
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ing fi ne-scale data for feeding models in medium- and small-sized cities is often 
constrained by poorly developed digital infrastructures in developing countries. 
This condition, to some degree, has obstructed the progress of fi ne-scale urban sim-
ulation for a large area in developing countries in general and in China in particular. 
Overcoming data shortfalls has become the top priority for fi ne-scale urban simula-
tion in developing countries, even in some developed countries, to support policy 
making. 

 In this chapter, we propose a term, namely “big model” for the fi ne-scale urban 
simulation model of a regional area with a large geographical scale. Big model is 
defi ned as data-driven regional analysis and urban simulation tools involving a vari-
ety of modeling approaches in this chapter as a new type of research paradigm for 
urban and regional studies, thus overcoming the trade-off between simulated scale 
and spatial unit. More importantly, as our ability to collect, store, and process data 
has increased remarkably in recent years since the digital revolution, big models 
would provide us with new opportunities for better understanding how cities work. 
There are four major reasons making the widespread use of big models happen. (1) 
Today, big data, such as mobile traces, public transport smartcard records, online 
check-ins/points-of-interest, and fl oating car trajectories, are becoming pervasively 
available. The spread of mobile technologies and computing has made generating, 
tracking, and recording individual data as partial representation of daily life, greatly 
supporting the analysis and modeling with rich datasets. Some scholars even advo-
cate that data are models themselves (Batty  2012 ). (2) Open access to data has been 
improved signifi cantly as there have been calls for governmental transparency and 
accountability. For instance, people can access the dataset inventory of planning 
permits from the offi cial website of Beijing Planning Commission, land transaction 
records from Beijing Land Bureau, and housing projects from Beijing Housing and 
Construction Commission. Generally, these records are associated with detailed 
project-level information, including fi ne-scale physical characteristics and urban 
development status. Supported by online geocoding services, these records can be 
utilized in big models in the form of point datasets. Without painstaking efforts 
towards an “open government”, no such things would have been possible in China. 
(3) Computational capacity has been largely improved for running big models by 
means of techniques like parallel computation and Hadoop. (4) For those bottom-up 
simulation methods adopted by big models, such as cellular automata, agent-based 
modeling, and network analysis, they have evolved and matured, allowing more 
sophisticate and powerful application of big models. Therefore, we argue that big 
models will mark a promising new era for the urban and regional study fi eld. 

 The purpose of this chapter is to summarize the progress of our existing research 
on the application of big models in China. The next section elaborates the basic 
ideas and characteristics of big models. Section  13.3  reviews the methodology 
development and several case studies in applying big models in various urban and 
regional researches. In the end, we conclude with a summary of our fi ndings and 
suggest directions for further research.  

13.1 A Golden Era of Big Models
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13.2     Big Models: A Novel Research Diagram for Urban 
and Regional Studies 

 Big models have the following characteristics. First, they need large-scale geo-
graphic data including so called “big data” or large-scale “open data” for initializa-
tion. The data may be collected at the individual observation level or based on small 
spatial units. Second, both the existing inter-city and intra-city analysis methods can 
be integrated in big models (see Fig.  13.3  for an illustration of a big model combin-
ing inter-city and intra-city approaches). Third, the geographic scale, or extent of 
big models is generally larger than that of conventional models but with similar 
spatial units of simulation. For instance, quality-of-life (QOL) studies can draw 
conclusions on a city using data at the block/parcel level. But with big models, the 
analysis of QOL can be conducted to a larger geographic scale, such as for a region 
or an entire country, and still maintain the same spatial resolution. Fourth, for the 
same geographical area, a big model can maintain at a higher spatial resolution 
when compared to a conventional model. A good example is that, in a national-scale 
population density research, the conventional models may only be applicable at the 
county or city level, whereas big models driven by fi ne-scale datasets make it pos-
sible to address the issue at the sub-district, block or parcel level, thus helping bring 
out more meaningful implication for urban spatial planning and policy-making.

   Big models can be applied in the following avenues. First, urban dynamics from 
cities of all sizes can be investigated and examined using big models. Currently, 
most of applied urban models (AUMs) can only be adopted in large cities where 

  Fig. 13.3    An illustration of a big model integrating intra-and inter-city methodologies       
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data infrastructure and technical capacity are much better than those in middle- and 
small-sized cities in China. The introduction of big models could bridge the digital 
divide caused by data infrastructure. Second, focusing on individual data and fi ne- 
scale analyses and modeling, big models provide insightful solutions to various 
planning issues and contribute to a potential transition from a physical- concentration 
to a more collaborative and human-oriented planning process. Third, big models 
enable a variety of urban form and network indicators to be available and meaning-
ful. These factors, combined with commonly adopted socio-economic aggregated 
indicators, can be adopted for inter-city analyses, which were particularly diffi cult 
previously due to lack of necessary road network and parcel geometries across 
many cities. 

 Simulating regional and urban dynamics using fi ne-scale and big models is 
advantageous as follows. (1) The adoption of local-level data with explicit geo-
graphical boundaries would be more appealing to local decision makers and citi-
zens; (2) Land use regulations of spatial plan could be targeted directly at the fi ne 
spatial level. This would benefi t those cities with limited capacity to analyze and 
forecast future development; (3) Such model can further be integrated with spatial 
interaction analysis (i.e. fl ows and networks).  

13.3      Case Studies Using Big Models 

 Our efforts on the development and application of big models represent a fi rst step 
towards a better understanding on cities using the emerging big data processing and 
analysis techniques in China. We outline our methodology development and 
research process of big models with several completed and ongoing research proj-
ects. As most of our case studies draw upon online data sources, the methodologies 
proposed in this chapter can be easily extended and applied to other cases. 

13.3.1     Mapping Urban Built-Up Area for All Chinese Cities at 
the Parcel/Block Level 

 Urban built-up areas play a strong role in representing urban spatial development 
for planning decisions, management, and urban studies. They not only illustrate 
spatial patterns but also reveal socio-economic characteristics within the built-up 
areas, e.g., population aggregation, social interaction, energy consumption, and 
land use effi ciency, thereby refl ecting how a city evolves in a complex manner 
(Batty and Ferguson  2011 ). Conventional methods for delineating urban built-up 
area from the top down have been applied in major cities around the world on a large 
scale. However, such methods cannot be applied to most of cities in developing 
countries due to lack of high-resolution data (Long et al.  2013 ). Moreover, the 
research approach of the existing methods for fi ne-scale studies is conditioned by 
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the presence of data and study context and hence varies from case to case. Against 
this backdrop, an automatic bottom-up approach was developed in this chapter. 
Built upon morphological and functional characteristics determined by street net-
work as well as point of interests (POIs), the proposed approach creates a unifi ed 
way to defi ne fi ne-scale cities of all sizes. 

 The defi nitions and measurements of urban built-up areas have been varied. 
Urban built-up areas in the United States are defi ned as Urbanized Areas (UA) in a 
typical administrative model for spatial statistics. A UA comprises one or more 
“central places” areas and the adjacent densely settled surrounding “urban fringe” 
areas, with a total population of 50,000 or more (Morrill et al.  1999 ). A counterpart 
in Japan is called “Densely Inhabited District” (DID). DID is a district which has a 
population density of more than 4000 people per km 2 . Urban Areas (UA) in UK are 
derived from entities-built areas, where certain real-estate densities are detected 
through satellite images (Hu et al.  2008 ). On the other hand, socio-economic factors 
are also adopted to describe the actual urban areas, e.g. labor force markets and 
commuter sheds are utilized to represent Metropolitan Area (MA) (Berry et al. 
 1969 ). Urban built-up areas can be utilized for different purposes with respect to 
population characteristics, economic status, and built environments attributes. 

 There are many ways of recording and mapping urban built-up areas. From the 
perspective of capturing morphological characteristics, an increasing attention has 
been focused on remote sensing images and street network. Remote sensing and 
night-time satellite imaging help us gauge urban activity and measure the extent and 
shape of built-up areas through capturing land cover information and interpreting 
light data (He et al.  2006 ). Apart from that, a number of indicators of street network 
have been introduced to describe the spatial layout of the built environment and 
predict their correlation with social effects. Examples are street intersection density 
(Masucci et al.  2012 ), fractal indices (Jiang and Yin  2014 ), integration, and acces-
sibility. In terms of the functional characteristics, socio-economic statistics such as 
demographic densities (Rozenfeld et al.  2009 ), effective employment density (SGS 
Economics and Planning  2011 ,  2012 ), and infrastructures accessibilities (Hu et al. 
 2008 ) have emerged as a standard method of defi ning urban statistical areas (US 
Census Bureau  2014 ). 

 Nevertheless, these aforementioned approaches have some drawbacks. Firstly, 
such methods cannot be applied to most of cities in developing countries due to 
lacking necessary data and fi ne digital equipment. Moreover, these existing meth-
ods still require multiple steps according to unique conditions if achieving a fi ne- 
scaled result is expected. Furthermore, these existing approaches seem to isolate the 
spatial characteristics and the functional ones; therefore the real urban activities 
seem to be absent in snapping the urban areas by existing methods. 

 In light of this situation, this chapter employs an automated framework – “auto-
matic identifi cation and characterization of parcels (AICP)” – that was proposed by 
Long and Liu ( 2014 ) to delineate urban built-up areas at the parcel level, based on 
increasingly standardized roadway asset data from ordnance surveys and crowd- 
sourced point-of-interests (POIs) data. Roadway data are used to identify and 
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describe parcel confi guration, and POIs are processed to infer the intensity, func-
tion, and mixing of land use and human activities. 

 The working defi nition of a parcel is a geographical entity bounded by roads. 
Identifying land parcels and delineating road space are therefore dual problems. In 
other words, our approach begins with the delineation of road space, and individual 
parcels are formed as polygons bounded by roads. The delineation of road space 
and parcels is performed as follows: (1) All roadway data are merged as line fea-
tures in a single data layer; (2) individual road segments are trimmed with a thresh-
old of 200 m to remove hanging segments; (3) individual road segments are then 
extended on both ends for 20 m to connect adjacent but non-connected lines; (4) 
road space is generated as buffer zones around road networks. A varying threshold 
ranging between 2 and 30 m is adopted for different road types (e.g., surface condi-
tion, as well as different levels of roads); (5) parcels are delineated as the space left 
when road space is removed; and (6) a fi nal step involves overlaying parcel poly-
gons with administrative boundaries to determine whether individual parcels belong 
to a certain administrative unit. 

 We regard POI density as the ratio between the counts of POIs in/close to a par-
cel to the parcel area. We further standardized the density to range from 0 to 1 for 
better inter-city and intra-city density comparison using the following equation: 
standardized density = log(raw)/log(max), where raw and max correspond to den-
sity of individual parcels and the nation-wide maximum density value. 1  We also 
note that other measures (e.g. online check-ins and fl oor area ratio) can substitute 
POIs and approximate the intensity of human activities. 

 A vector cellular automata (VCA) model is adopted to identify urban parcels 
from all generated parcels. In this model, each parcel is assigned a value of 0 (urban) 
or 1 (non-urban). Initially, all parcels are assumed to be rural. To determine the 
actual status of each parcel, we should take into account not only the individual 
parcel’s intrinsic attributes, such as population density, neighborhood attributes, and 
some other spatial variables, but also the status of neighboring parcels. The model 
stops at the iteration when the total area of simulated urban parcels reaches total 
urban land. 

 We applied this approach to map city boundaries for all Chinese cities and com-
pared them with urban areas identifi ed by GLOBCOVER, DMSP/OLS and popula-
tion density. The simulation process and results highlight our proposed framework 
is more straightforward, time-saving and precise than conventional methods (see 
Fig.  13.4  for the results in typical cities).

   The contribution of this work lies in three major aspects: data, methodology, and 
innovation. Firstly, the fi nal product of this project is a database containing urban 
built-up area maps with detailed parcel features for 654 Chinese cities. Featured by 
fi ne-scale parcel information, the detailed road network and POIs datasets consoli-
dated in this research can be applied to support a variety of planning and urban 

1   The unit is the POI count per km 2 . For parcels with no POIs, we assume a minimum density of 1 
POI per km 2 . 
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studies projects covering a wide range of geographic extent. Secondly, our research 
proposed a straightforward and consistent approach to identifying urban built-up 
areas across the country. Unlike previous methods that are somewhat laborious and 
subjective, our proposed methodology driven by VCA modeling is automatic, 
straightforward, and objective. The generated parcels can serve as basic spatial units 
for incorporating other high-resolution ubiquitous and spatially referenced data. In 
addition to the contribution of delineating urban built-up areas, this research also 
provides a robust framework for understanding complex urban system across cities 
from a bottom-up perspective.  

13.3.2     Simulating Urban Expansion at Parcel Level for All 
Chinese Cities 

 China, as the largest developing country in the world, has experience rapid levels of 
urbanization in recent year since the introduction of Chinese Reform and Opening-up 
policies (Montgomery  2008 ; Liu et al.  2012 ). Featured by the history’s largest fl ow 
of rural-to-urban migration and unprecedented economic growth, the urbanization 

  Fig. 13.4    Mapped urban areas in fi ve typical Chinese cities by various methods       
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process has shaped and transformed China from a rural to a more urban society. In 
light of this situation, increasing efforts on urban development assessment and man-
agement tools have been made in an attempt to promote a more sustainable develop-
ment in China; among them are scenario-based urban simulation models (Zhang 
and Long  2013 ). 

 Large-scale simulation models are generally associated with large spatial units in 
space, like counties or super grids, sometimes reaching tens of square kilometers. 
Few applied urban models have the ability to pursue a large geographic scale extent 
with fi ne-level spatial units simultaneously due to data paucity and computation 
capacity limitation as discussed previously. Urban expansion simulation at a large 
geographic extent with a fi ne-scale (i.e. parcel scale) spatial unit could be promising 
for several reasons. Firstly, simulation and analysis at the parcel level would be 
more meaningful for local planners, decision makers, and residents to understand, 
administer, and monitor urban developments. Secondly, simulation modeling at the 
large geographic extent enables those administrative entities who have limited 
capacity to analyze and forecast the urban growth taking place within their boundar-
ies by their own to have an insight on overall urban development scenario within the 
region and to gauge their growth and take action properly. Also, such simulation 
models make inter-city comparison possible. 

 In this section, we developed a mega-vector-parcels cellular automata model 
(MVP-CA) for simulating urban expansion in the parcel level for all 654 Chinese 
cities. Three modules, the macro module, the parcel generation module, and 
the vector CA module, were included in the MVP-CA, as shown in Fig.  13.5 . 
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  Fig. 13.5    The structure and fl ow diagram of MVP-CA       
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The macro module was responsible for setting urban expansion rate in the next fi ve 
years for each city, taking into account historical urban expansion rate and national 
spatial development strategies. The parcel generation module was used for identify-
ing existing urban parcels in 2012 using the framework of AICP (automatic identi-
fi cation and characterization of parcels) proposed by Long and Liu ( 2014 ). The 
vector CA module was applied for simulating urban expansion during 2012–2017. 
This module was examined using calibrated parameters abstracted from Beijing 
data. Three urban expansion scenarios – baseline, urban agglomeration, and new 
urban development- have been simulated during 2012–2017 by MVP-CA, respec-
tively. The simulation results are shown in Fig.  13.6 . We validated the simulation 
results by comparing the baseline scenario of Beijing with the results using a raster 
CA model BUDEM we developed previously.

    As one of the fi rst large-scale urban expansion models at the fi ne-scale for the 
whole China, our contributions of this chapter mainly lie in the following aspects. 
First, a vector-based cellular automata model was introduced for simulating urban 
expansion in a large geographical scale at the parcel level, which is rare in existing 
literature in the domain urban expansion modelling. Second, we proposed a solution 
for linking spatial development strategies with urban expansion via refl ecting as the 
urban expansion speed of each city. This enables simulating macro policies in a very 
fi ne-scale through the channel of the MVP-CA model. Last, we simulated the near- 
future urban area for all Chinese cities in China, which, together with existing urban 
area, has already been shared online as an important data infrastructure for both 
practitioners and researchers.  

13.3.3     Evaluating Urban Growth Boundaries 
for 300 Chinese Cities 

 Among the various urban growth management policies, urban containment policies 
have been widely adopted in an attempt to control the spread of urban areas, increase 
urban land use density, and protect open space (Nelson and Duncan  1995 ; Long 
et al.  2011 ). In general, urban containment policies seek to manage urban growth 
through at least three different types of tools – greenbelts, urban growth boundaries 
(UGBs), and urban service boundaries (USBs) (Pendall et al.  2002 ). UGB is one of 
the most widely discussed tools in the planning fi eld. Through zoning, land devel-
opment permits, and other land-use regulation tools, UGBs demarcate urban and 
rural uses and aim to contain urban development within the predefi ned boundaries 
(Pendall et al.  2002 ). In China, urban construction boundaries determined in master 
or detailed plans have been commonly recognized as Chinese/planned UGBs (Long 
et al.  2013 ), since they have a similar mechanism to UGBs in the U.S. as well as 
some other Western countries. 

 In China, conventional methods of delineating UGBs are based on planners’ 
expertise and experiences; thus, they lack an adequate scientifi c basis and quantita-
tive support. Consequently, the UGBs often fail to manage urban growth. According 
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to Han et al. ( 2009 )’s study on the examination of the implementation of planned 
UGBs within the sixth ring road of Beijing using multi-temporal remote sensing 
images, more urban land developments were found outside than inside the UGBs 
during the previous two planning periods (1983–1993 and 1993–2005). Tian and 
Shen ( 2011 ) and Xu et al. ( 2009 ) also suggested that substantial urban development 
occurred outside of UCBs in Guangzhou and Shanghai in recent years. These fi nd-
ings were also supported by Long et al. ( 2012 )’s research, which evaluated fi ve 
master plans compiled and implemented in Beijing during 1958–2004. Though 
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  Fig. 13.6    Urban area of all Chinese cities ( a ), and urban expansion patterns of the entire China for 
three scenarios (( a ) BAU, ( b ) UAO, ( c ) NTU)       
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considerable progress has been made in revealing and quantifying the extent of 
urbanization and/or evaluating the urban policies’ effectiveness on managing urban 
growth, we have found that most of them have been focused on a single city or 
region, and little work on the city-level comparison of the performance of UGB’s 
implementation has been done. 

 Driven by our proposed urban growth simulation model and other relevant big 
models studies, we launched effort to create a systematic approach to horizontally 
examine and evaluate the effectiveness of UGBs across cities and regions. We col-
lected raw planning drawing maps on planned UGBs in over 300 Chinese cities (see 
Fig.  13.7  for a partial sample of cities) and digitalized the boundaries in GIS to 
facilitate spatial analysis and statistics on these planned UGBs. After that, the 
planned UGBs of a city were overlaid and compared with the actual extent of urban 
expansion in the past years since the plan was fi rst implemented, and the ratio of 
legal development to all urban development can be directly calculated to facilitate 
city-level comparison. Furthermore, the ambitious degree of each city can be 
inferred by dividing the actual extent of urban expansion by the planned-to-be- 
development land area.

   Compared with previous studies on big models to date, this research generalizes 
the planned UGBs across cities and regions and helps make sense of differing results 
of urban development. In addition, it can provide an insight of the overall trend of 
urban development in China and thus would be useful for planners to evaluate, 
monitor, and manage urban planning efforts. 

 Meanwhile, the digitalized UGBs can also be used to supplement the MVP-CA 
urban expansion model for all Chinese cities (see our fi rst case study in this chapter) 
as an institutional constraint, thus accounting for the simulation results. In addition, 
the project may help identify some universal law of governing the pattern of planned 
UGBs among all Chinese cities.  

  Fig. 13.7    The profi le of raw fi gures for planned UGBs (partially shown)       
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13.3.4     Estimating Population Exposure to PM2.5 

 Chinese cities have for many years suffered from air pollution, which has been a 
major downside to rapid economic growth and increased urbanization. Currently, 
few studies of air pollution have been conducted to assess population exposure to 
PM2.5 over large geographical areas and time periods in China. The existing studies 
mainly focus on air pollution’s effects on health and ecosystems or relevant moni-
toring methods and measurement, but less has been done on the link between urban 
spatial structure and air pollution exposure, not to mention their spatiotemporal 
pattern. 

 In this study, we collected daily PM 2.5 concentrations during April 08, 2013 and 
April 07, 2014 from 945 monitoring stations in 190 cities across China. 2  The air 
quality data were acquired from China National Environmental Monitoring Center 
(  http://www.cnemc.cn    ). These datasets enable us to understand the PM 2.5 concen-
tration of each station all year round, and can be used as a key input for our estima-
tion. Considering the sparse distribution of monitoring stations across China, we 
further used Moderate Resolution Imaging Spectroradiometer (MODIS) Aerosol 
Optical Depth (AOD) retrievals to supplement the PM 2.5 estimates on a daily basis. 
Demographic statistics were drawn from China’s 2010 census data. The spatial dis-
tribution of population density across China was determined by geocoding popula-
tion density of each sub-district based on Google Map API. In total, there are 39,007 
sub-districts 3  in China, and the average population density for all sub-districts is 977 
persons per km 2 . Population have been divided into three age groups (age 0–14, age 
15–64, and 65 years and older), with an aim to differentiate the exposure estimates 
for different sensitive groups such as children and seniors. It is worth mentioning 
that this is the fi rst time to use sub-district population density for estimating human 
exposure to air pollution in China, whereas former studies were conducted at the 
county level at best. 

 The population exposure estimation involves three major steps. (1) Interpolate 
the PM2.5 concentration site data into surface data using both ground station-level 
data and MODIS ADO: PM2.5 concentration data were obtained from all air quality 
monitoring stations across the country and supplemented with MODIS ADO data. 
Using numerous spatial interpolation methods, the station-level data can be interpo-
lated into surface data. The outcome of this step is the average daily PM2.5 concen-
tration over the entire area and over time. (2) Estimating population exposure to 
PM2.5 for each sub-district. Based on interpolated PM2.5 data, a daily PM2.5 con-
centration above the national standard of 75 mg/m 3  is considered to be unhealthy 
and thus defi ned as “exposed”. In this way, the total exposed days all year round of 
each sub-district can be estimated. Further, the exposure intensity for each sub- 

2   There are 657 cities in mainland China as of the end of 2012. 
3   There are three forms of township-level administrative units in China, sub-districts ( jiedao ), 
towns ( zhen ), and township ( xiang ). Jiedaos are mainly in city area.  Jiedao ’s counterparts in the 
rural area are towns and townships. Hereafter in this chapter, we use the term sub-district for rep-
resenting all types of township-level administrative units in China. 

13.3 Case Studies Using Big Models
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district can be calculated using the Equation: Exposure intensity = Population den-
sity * Exposed days. The greater exposed days or population density for a 
sub-district, the higher exposure intensity. This indicator refl ects the strength of 
population exposure to PM2.5. The population density can be subject to specifi c 
sub-population groups for estimating the effects on members of sensitive groups. 
(3) Aggregating the estimated results spatiotemporally. To gain ideas on spatiotem-
poral pattern of population exposure to PM2.5, we can further aggregate the esti-
mated results in both temporal and spatial dimensions. For the temporal dimension, 
the total number of exposed month can be calculated for each sub-district, thus 
presenting a big picture of population exposure to air quality over time. For the 
spatial dimension, the exposure of each city can be inferred by averaging the esti-
mation results of all sub-districts in each city’s administrative boundary. 

 The number of months subject to exposed condition across the entire country is 
presented in Fig.  13.8 .

   The daily exposure for each sub-district was further aggregated by each month. 
Table  13.1  displays the percentage of exposure days per month from April 2013 to 
March 2014.

   The exposure intensities were obtained by multiplying population density for each 
sub-district with the estimated exposure days during the period. The fi nal result is pre-
sented in Fig.  13.9 . It is worth pointing out that the overall exposure intensity pattern 
generally coincides with the distribution of population density across the country.

  Fig. 13.8    The number of total exposed months for each sub-district in China       
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13.4         Conclusions and Future Directions 

 This chapter has proposed the concept of big model as a novel research paradigm 
for regional analysis and urban studies. The concept, characteristics, and potential 
applications of big models have been elaborated. Meanwhile, we addressed several 
case studies to illustrate the progress of research and applications of big models, 
including mapping urban areas for all Chinese cities, performing parcel-level urban 
simulation, and several ongoing research projects. Most of these applications can be 
adopted across the whole country, and all of them are focusing on a fi ne-scale level, 
such as a parcel, a block, or a township (sub-district), which is quite different from 
the existing studies using conventional models. Believing that big models will mark 
a promising new era for the urban and regional studies in the era of new data envi-
ronment, we hope our efforts on urban analytics and modeling in Beijing City will 
set new research agenda and inspire innovative ideas all over the country. 

 There are several avenues on big models that deserve further studies. First, it is 
necessary to combine both intra-city and inter-cities methods in big models. Existing 
case studies in this chapter mainly rely on bottom-up intra-city approaches. City 
level connections are essential to be included in big models in the next step. For 
instance, a spatial equilibrium module considering the city level input-output would 
be helpful for the current MVP-CA model via addressing the interaction between 
cities. Second, more general theory on big models can be identifi ed through more 
in-depth case studies analysis.     

  Fig. 13.9    Exposure intensity at the town level of China       
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