

Programming
ArcGIS 10.1 with
Python Cookbook

Over 75 recipes to help you automate geoprocessing
tasks, create solutions, and solve problems
for ArcGIS with Python

Eric Pimpler

BIRMINGHAM - MUMBAI

Programming ArcGIS 10.1 with Python
Cookbook

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Production Reference: 1120213

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84969-444-5

www.packtpub.com

Cover Image by Sujay Gawand (sujaygawand@gmail.com)

Credits

Author
Eric Pimpler

Reviewers
Alissa Bickar

Ann Stark

Tripp Corbin, CFM, GISP

Acquisition Editor
Andrew Duckworth

Lead Technical Editor
Dayan Hyames

Technical Editor
Lubna Shaikh

Project Coordinator
Amey Sawant

Proofreaders
Chris Brown

Sandra Hopper

Indexer
Tejal Soni

Graphics
Aditi Gajjar

Production Coordinators
Manu Joseph

Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Eric Pimpler is the founder and owner of GeoSpatial Training Services
(geospatialtraining.com) and has over 20 years of experience in implementing
and teaching GIS solutions using ESRI technology. Currently, Eric focuses on ArcGIS scripting
with Python, and the development of custom ArcGIS Server web and mobile applications
using JavaScript.

Eric has a Bachelor’s degree in Geography from Texas A&M University and a Master’s of
Applied Geography degree with a concentration in GIS from Texas State University.

http://geospatialtraining.com

About the Reviewers

Alissa Bickar is a GIS Analyst and instructor who has a large interest in geospatial
technologies and projects. She has developed various courses as an instructor for GeoSpatial
Training Services and has been appointed as the ArcGIS Desktop Training Program Manager
with GTS. She is responsible for developing and updating course materials for the program, as
well as assisting clients with their course and annual subscriptions.

She has extensive experience in the GIS field as a consultant to federal and local
governments, environmental engineering firms, and many clients in the Oil and Gas
industry. She also has experience as a college professor and has helped develop GIS
and Geography courses for higher education.

Alissa has both a Bachelor’s and Master’s degree in Geography from California University
of Pennsylvania.

Ann Stark, a GISP since 2005, has been active in the GIS profession for 15 years. She is
passionate about GIS and is an active and engaging member of the GIS community in the Pacific
Northwest of the United States, coordinating local user groups and serving as the President
of the region’s GIS professional group. She is an enthusiastic teacher who explains how to
effectively use Python with ArcGIS and maintains a blog devoted to the topic at GISStudio.
wordpress.com. She co-owns a GIS consulting business, called Salish Coast Sciences, which
provides strategic planning, process automation, and GIS development services.

To unwind from technology, Ann enjoys spending time with her husband and son at their
urban farm in the heart of a city where they seek to live sustainably and as self-sufficiently
as an urban farm allows.

Tripp Corbin, CFM, GISP is the CEO and a Co-founder of eGIS Associates, Inc. He has
over 20 years of surveying, mapping, and GIS-related experience. Tripp is recognized as an
industry expert with a variety of geospatial software packages including Esri, Autodesk, and
Trimble products. He holds multiple certifications including Microsoft Certified Professional
(MCP), Certified Floodplain Manager (CFM), Certified GIS Professional (GISP), Comptia
Certified Technical Trainer (CTT+), and Esri Certified Trainer.

As a GIS Instructor, Tripp has taught students from around the world the power of GIS. He has
authored many classes on topics ranging from the beginner level, such as Introduction to GIS,
GIS Fundamentals to more advanced topics such as ArcGIS Server Installation, Configurations
and Tweaks. Tripp recently helped the University of North Alabama Continuing Studies Center
develop an online GIS Analyst Certificate Program.

Tripp believes in giving back to the profession that has given him so much. As a result, he is
heavily active in multiple GIS-oriented professional organizations. He is a past President of
Georgia, URISA, and was recently the Keynote Speaker for the Georgia Geospatial Conference.
Tripp also serves on the URISA International Board of Directors, in addition to being a member
of the GISP Application Review committee and an At-Large GITA Southeast Board Member.

Other contributions Tripp has made to the GIS Profession include helping to draft the new
Geospatial Technology Competency Model that was adopted by the US Department of Labor,
presenting at various conferences and workshops around the US, and providing help to other
GIS professionals around the world on various blogs, lists, and forums.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print and bookmark content

 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Fundamentals of the Python Language for ArcGIS 7

Using IDLE for Python script development 8
Python language fundamentals 11
Summary 28

Chapter 2: Writing Basic Geoprocessing Scripts with ArcPy 29
Introduction 29
Using the ArcGIS Python window 30
Accessing ArcPy with Python 32
Executing tools from a script 35
Using ArcGIS Desktop help 39
Using variables to store data 42
Accessing ArcPy modules with Python 44

Chapter 3: Managing Map Documents and Layers 47
Introduction 47
Referencing the current map document 48
Referencing map documents on a disk 50
Accessing a data frame 51
Getting a list of layers in a map document 52
Restricting the list of layers 54
Changing the map extent 56
Getting a list of tables 58
Adding layers to a map document 59
Inserting layers into a map document 61
Updating layer symbology 64
Updating layer properties 66

ii

Table of Contents

Chapter 4: Finding and Fixing Broken Data Links 73
Introduction 73
Finding broken data sources in your map document and layer files 74
Fixing broken data sources with MapDocument.
findAndReplaceWorkspacePaths() 76
Fixing broken data sources with MapDocument.replaceWorkspaces() 79
Fixing individual Layer and Table objects with replaceDataSource() 82
Finding all broken data sources in all map documents in a folder 85

Chapter 5: Automating Map Production and Printing 89
Introduction 89
Creating a list of layout elements 90
Assigning a unique name to layout elements 92
Restricting the layout elements returned by ListLayoutElements() 97
Updating layout element properties 98
Getting a list of available printers 101
Printing maps with PrintMap() 102
Exporting a map to a PDF file 103
Exporting a map to an image file 105
Creating a map book with
PDFDocumentCreate() and PDFDocumentOpen() 106

Chapter 6: Executing Geoprocessing Tools from Scripts 109
Introduction 109
Finding geoprocessing tools 110
Retrieving a toolbox alias 114
Executing geoprocessing tools from a script 117
Using the output of a tool as an input to another tool 120
Setting environment variables and examining tool messages 122

Chapter 7: Creating Custom Geoprocessing Tools 125
Introduction 125
Creating a custom geoprocessing tool 125

Chapter 8: Querying and Selecting Data 143
Introduction 143
Constructing proper attribute query syntax 144
Creating feature layers and table views 150
Selecting features and rows with the Select Layer by Attribute tool 154
Selecting features with the Select by Location tool 157
Combining a spatial and attribute query with the Select by Location tool 161

iii

Table of Contents

Chapter 9: Using the ArcPy Data Access Module to Select, Insert,
and Update Geographic Data and Tables 165

Introduction 166
Retrieving features from a feature class with a SearchCursor 168
Filtering records with a where clause 170
Improving cursor performance with geometry tokens 172
Inserting rows with InsertCursor 175
Updating rows with an UpdateCursor 180
Deleting rows with an UpdateCursor 184
Inserting and updating rows inside an edit session 186
Reading geometry from a feature class 190

Chapter 10: Listing and Describing GIS Data 193
Introduction 194
Getting a list of feature classes in a workspace 194
Restricting the list of feature classes returned with a wildcard 196
Restricting the list of feature classes returned with a feature type 197
Getting a list of fields in a feature class or table 198
Using the Describe() function to return descriptive information
about a feature class 201
Using the Describe() function to return descriptive information
about an image 204
Returning workspace information with the Describe() function 206

Chapter 11: Customizing the ArcGIS Interface with Add-Ins 209
Introduction 209
Downloading and installing the Python Add-In wizard 210
Creating a button add-in 213
Installing and testing an add-in 223
Creating a tool add-in 227

Chapter 12: Error Handling and Troubleshooting 233
Introduction 233
Exploring the default Python error message 234
Adding Python exception handling structures (try/except/finally) 235
Retrieving tool messages with GetMessages() 237
Filtering tool messages by severity level 238
Testing for and responding to specific error messages 240
Returning individual messages with GetMessage() 242

iv

Table of Contents

Appendix A: Automating Python Scripts 245
Introduction 245
Running Python scripts from the command line 246
Using sys.argv[] to capture command-line input 251
Adding Python scripts to batch files 253
Scheduling batch files to run at prescribed times 254

Appendix B: Five Things Every GIS Programmer Should Know
How to Do with Python 263

Introduction 263
Reading data from a delimited text file 264
Sending e-mails 267
Retrieving files from an FTP server 271
Creating ZIP files 275
Reading XML files 278

Index 281

Preface
ArcGIS is an industry-standard geographic information system from ESRI.

This book will show you how to use the Python programming language to create geoprocessing
scripts, tools, and shortcuts for the ArcGIS Desktop environment.

This book will make you a more effective and efficient GIS professional, by showing you how
to use the Python programming language with ArcGIS Desktop to automate geoprocessing
tasks, manage map documents and layers, find and fix broken data links, edit data in feature
classes and tables, and much more.

Programming ArcGIS 10.1 with Python Cookbook starts by covering fundamental Python
programming concepts in an ArcGIS Desktop context. Using a how-to instruction style, you'll
then learn how to use Python to automate common important ArcGIS geoprocessing tasks.

In this book, you will also cover specific ArcGIS scripting topics that will help save you time and
effort when working with ArcGIS. Topics include managing map document files, automating
map production and printing, finding and fixing broken data sources, creating custom
geoprocessing tools, and working with feature classes and tables, among others.

In Programming ArcGIS 10.1 with Python Cookbook, you'll learn how to write geoprocessing
scripts using a pragmatic approach designed around accomplishing specific tasks in a
cookbook style format.

Preface

2

What this book covers
Chapter 1, Fundamentals of the Python Language for ArcGIS, will cover many of the basic
language constructs found in Python. Initially, you'll learn how to create new Python scripts
or edit existing scripts. From there, you'll get into language features, such as adding
comments to your code, variables, and the built-in typing systems that makes coding with
Python easy and compact. Furthermore, we'll look at the various built-in data-types that
Python offers, such as strings, numbers, lists, and dictionaries. In addition to this, we'll cover
statements, including decision support and looping structures for making decisions in your
code and/or looping through a code block multiple times.

Chapter 2, Writing Basic Geoprocessing Scripts with ArcPy, will teach the basic concepts
of the ArcPy Python site package for ArcGIS, including an overview of the basic modules,
functions, and classes. The reader will be able write a geoprocessing script using ArcPy
with Python.

Chapter 3, Managing Map Documents and Layers, will use the Arcpy Mapping module to
manage map document and layer files. You will learn how to add and remove geographic layers
from map document files, insert layers into data frames, and move layers around within the
map document. The reader will also learn how to update layer properties and symbology.

Chapter 4, Finding and Fixing Broken Data Links, will teach how to generate a list of broken
data sources in a map document file and apply various Arcpy Mapping functions to fix these
data sources. The reader will learn how to automate the process of fixing data sources across
many map documents.

Chapter 5, Automating Map Production and Printing, will teach how to automate the process
of creating production-quality maps. These maps can then be printed, exported to image file
formats, or exported to PDF files for inclusion in map books.

Chapter 6, Executing Geoprocessing Tools from Scripts, will teach how to write scripts that
access and run geoprocessing tools provided by ArcGIS.

Chapter 7, Creating Custom Geoprocessing Tools, will teach how to create custom
geoprocessing tools that can be added to ArcGIS and shared with other users. Custom
geoprocessing tools are attached to a Python script that process or analyze geographic
data in some way.

Chapter 8, Querying and Selecting Data, will teach how to execute the Select by Attribute
and Select by Location geoprocessing tools from a script to select features and records.
The reader will learn how to construct queries that supply an optional where clause for the
Select by Attribute tool. The use of feature layers and table views as temporary datasets
will also be covered.

Preface

3

Chapter 9, Using the ArcPy Data Access Module to Select, Insert, and Update Geographic
Data and Tables, will teach how to create geoprocessing scripts that select, insert, or update
data from geographic data layers and tables. With the new ArcGIS 10.1 Data Access module,
geoprocessing scripts can create in-memory tables of data, called cursors, from feature
classes and tables. The reader will learn how to create various types of cursors including
search, insert, and update

Chapter 10, Listing and Describing GIS Data, will teach how to obtain descriptive information
about geographic datasets through the use of the Arcpy Describe function. As the first step
in a multi-step process, geoprocessing scripts frequently require that a list of geographic
data be generated followed by various geoprocessing operations that can be run against
these datasets.

Chapter 11, Customizing the ArcGIS Interface with Add-Ins, will teach how to customize the
ArcGIS interface through the creation of Python add-ins. Add-ins provide a way of adding user
interface items to ArcGIS Desktop through a modular code base designed to perform specific
actions. Interface components can include buttons, tools, toolbars, menus, combo boxes, tool
palettes, and application extensions. Add-ins are created using Python scripts and an XML file
that define how the user interface should appear.

Chapter 12, Error Handling and Troubleshooting, will teach how to gracefully handle errors and
exceptions as they occur while a geoprocessing script is executing. Arcpy and Python errors
can be trapped with the Python try/except structure and handled accordingly.

Appendix A, Automating Python Scripts, will teach how to schedule geoprocessing scripts to run
at a prescribed time. Many geoprocessing scripts take a long time to fully execute and need to
be scheduled to run during non-working hours on a regular basis. The reader will learn how to
create batch file containing geoprocessing scripts and execute these at a prescribed time.

Appendix B, Five Things Every GIS Programmer Should Know How to Do with Python, will
teach how to write scripts that perform various general purpose tasks with Python. Tasks,
such as reading and writing delimited text files, sending e-mails, interacting with FTP servers,
creating ZIP files, and reading and writing JSON and XML files are common. Every GIS
programmer should know how to write Python scripts that incorporate this functionality.

What you need for this book
To complete the exercises in this book, you will need to have installed ArcGIS Desktop 10.1
at either the Basic, Standard, or Advanced license level. Installing ArcGIS Desktop 10.1 will
also install Python 2.7 along with the IDLE Python code editor.

Preface

4

Who this book is for
Programming ArcGIS 10.1 with Python Cookbook is written for GIS professionals who wish to
revolutionize their ArcGIS workflow with Python. Whether you are new to ArcGIS or a seasoned
professional, you almost certainly spend time each day performing various geoprocessing
tasks. This book will teach you how to use the Python programming language to automate
these geoprocessing tasks and make you a more efficient and effective GIS professional.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: " we have loaded the ListFeatureClasses.py
script with IDLE."

A block of code is set as follows:

import arcpy
fc = "c:/ArcpyBook/data/TravisCounty/TravisCounty.shp"

Fetch each feature from the cursor and examine the extent properties
and spatial reference
for row in arcpy.da.SearchCursor(fc, ["SHAPE@"]):
 # get the extent of the county boundary
 ext = row[0].extent
 # print out the bounding coordinates and spatial reference
 print "XMin: " + ext.XMin
 print "XMax: " + ext.XMax
 print "YMin: " + ext.YMin
 print "YMax: " + ext.YMax
 print "Spatial Reference: " + ext.spatialReference.name

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

import arcpy

fc = "c:/data/city.gdb/streets"

For each row print the Object ID field, and use the SHAPE@AREA
token to access geometry properties

with arcpy.da.SearchCursor(fc, ("OID@", "SHAPE@AREA")) as cursor:
 for row in cursor:
 print("Feature {0} has an area of {1}".format(row[0], row[1]))

Preface

5

Any command-line input or output is written as follows:

[<map layer u'City of Austin Bldg Permits'>, <map layer u'Hospitals'>,
<map layer u'Schools'>, <map layer u'Streams'>, <map layer u'Streets'>,
<map layer u'Streams_Buff'>, <map layer u'Floodplains'>, <map layer
u'2000 Census Tracts'>, <map layer u'City Limits'>, <map layer u'Travis
County'>]

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "go to Start | Programs |
ArcGIS | Python 2.7 | IDLE".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Preface

6

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.PacktPub.com. If you purchased this book elsewhere, you can
visit http://www.PacktPub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/support, selecting your book, clicking on the errata
submission form link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded on our website, or added to any
list of existing errata, under the Errata section of that title. Any existing errata can be viewed by
selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

1
Fundamentals of the
Python Language for

ArcGIS
Python supports many of the programming constructs found in other languages. In this
chapter, we'll cover many of the basic language constructs found in Python. Initially, we'll
cover how to create new Python scripts and edit existing scripts. From there, we'll delve into
language features, such as adding comments to your code, creating and assigning data to
variables, and built-in variable typing with Python, which makes coding with Python easy
and compact.

Next, we'll look at the various built-in data-types that Python offers, such as strings, numbers,
lists, and dictionaries. Classes and objects are a fundamental concept in object-oriented
programming and in the Python language. We'll introduce you to these complex data
structures, which you'll use extensively when you write geoprocessing scripts with ArcGIS.

In addition, we'll cover statements including decision support and looping structures for making
decisions in your code and/or looping through a code block multiple times along with with
statements, which are used extensively with the new cursor objects in the Arcpy Data Access
module. Finally, you'll learn how to access modules that provide additional functionality to the
Python language. By the end of this chapter, you will have learned the following:

 f How to create and edit new Python scripts

 f Python language features

 f Comments and data variables

 f Built-in datatypes (Strings, Numbers, Lists, and Dictionaries)

 f Complex data structures

 f Looping structures

 f Additional Python functionality

Fundamentals of the Python Language for ArcGIS

8

Using IDLE for Python script development
As I mentioned in the preface, when you install ArcGIS Desktop, Python is also installed along
with a tool called IDLE that allows you to write your own code. IDLE stands for Integrated
DeveLopment Environment. Because it is available with every ArcGIS Desktop installation,
we'll use the IDLE development environment for many of the scripts that we write in this
book along with the Python window embedded in ArcGIS Desktop. As you progress as a
programmer, you may find other development tools that you prefer over IDLE. You can
write your code in any of these tools.

The Python shell window
To start the IDLE development environment for Python, you can go to Start | Programs |
ArcGIS | Python 2.7 | IDLE. Please note that the version of Python installed with ArcGIS will
differ depending upon the ArcGIS version that you have installed. For example, ArcGIS 10.0
uses Python 2.6 while ArcGIS 10.1 uses Python 2.7.

A Python shell window similar to the screenshot will be displayed:

The Python shell window is used for output and error messages generated by scripts. A
common mistake for beginners is to assume that the geoprocessing scripts will be written
in this shell window. That is not the case. You will need to create a separate code window
to hold your scripts.

Although the shell window isn't used to write entire scripts, it can be used to interactively write
code and get immediate feedback. ArcGIS has a built-in Python shell window that you can use
in much the same way. We'll examine the ArcGIS Python window in the next chapter.

The Python script window
Your scripts will be written in IDLE inside a separate window known as the Python script
window. To create a new code window, select File | New Window from the IDLE shell window.
A window similar to that in the following screenshot will be displayed:

Chapter 1

9

Your Python scripts will be written inside this new code window. Each script will need to be
saved to a local or network drive. By default, scripts are saved with a .py file extension.

Editing existing Python scripts
Existing Python script files can be opened from Windows Explorer by right-clicking on the file
and selecting Edit with IDLE, which brings up a new shell window along with the script loaded
in the Python script editor. You can see an example of this in the following screenshot:

Fundamentals of the Python Language for ArcGIS

10

In this instance, we have loaded the ListFeatureClasses.py script with IDLE. The code is
loaded inside the script window:

Now that the code window is open, you can begin writing or editing code. You can also
perform some basic script debugging with the IDLE interface. Debugging is the process
of identifying and fixing errors in your code.

Executing scripts from IDLE
Once you've written a geoprocessing script in the IDLE code window or opened an existing
script, you can execute the code from the interface. IDLE does provide functionality that allows
you to check the syntax of your code before running the script. In the code window, select Run
| Check Module to perform a syntax check of your code.

Any syntax errors will be displayed in the shell window. If there aren't any syntax errors, you
should just see the prompt in the shell window. While the IDLE interface can be used to check
for syntax errors, it doesn't provide a way of checking for logical errors in your code nor does
it provide more advanced debugging tools found in other development environments, such as
PythonWin or Wingware.

Once you're satisfied that no syntax errors exist in your code, you can run the script. Select
Run | Run Module to execute the script:

Any error messages will be written to the shell window along with output from print statements
and system-generated messages. The print statement simply outputs a string to the shell
window. It is often used for updating the status of a running script or for debugging the code.

Chapter 1

11

Python language fundamentals
To effectively write geoprocessing scripts for ArcGIS, you are going to need to understand
at least the basic constructs of the Python language. Python is easier to learn than most
other programming languages, but it does take some time to learn and effectively use it.
This section will teach you how to create variables, assign various datatypes to variables,
understand the different types of data that can be assigned to variables, use different types
of statements, use objects, read and write files, and import third-party Python modules.

Commenting code
Python scripts should follow a common structure. The beginning of each script should
serve as documentation detailing the script name, author, and a general description of the
processing provided by the script. This documentation is accomplished in Python through
the use of comments. Comments are lines of code that you add to your script that serve as
a documentation of what functionality the script provides. These lines of code begin with a
single pound sign (#) or a double pound sign (##), and are followed by whatever text you need
to document the code. The Python interpreter does not execute these lines of code. They are
simply used for documenting your code. In the next screenshot, the commented lines of code
are displayed in red. You should also strive to include comments throughout your script to
describe important sections of your script. This will be useful to you (or another programmer)
when the time comes to update your scripts.

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.PacktPub.com. If you
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

Fundamentals of the Python Language for ArcGIS

12

Importing modules
Although Python includes many built-in functions, you will frequently need to access specific
bundles of functionality, which are stored in external modules. For instance, the Math module
stores specific functions related to processing numeric values and the R module provides
statistical analysis functions. Modules are imported through the use of the import statement.
When writing geoprocessing scripts with ArcGIS, you will always need to import the ArcPy
module, which is the Python package for accessing GIS tools and functions provided by ArcGIS.
import statements will be the first lines of code (not including comments) in your scripts:

import arcpy, os

Variables
At a high level, you can think of a variable as an area in your computer's memory reserved for
storing values while the script is running. Variables that you define in Python are given a name
and a value. The values assigned to variables can then be accessed by different areas of your
script as needed, simply by referring to the variable name. For example, you might create a
variable that contains a feature class name, which is then used by the Buffer tool to create
a new output dataset. To create a variable, simply give it a name followed by the assignment
operator, which is just an equal sign (=), and then a value:

fcParcels = "Parcels"
fcStreets = "Streets"

The following table illustrates the variable name and values assigned to the variable using the
preceding code example:

Variable name Variable value
fcParcels Parcels

fcStreets Streets

There are certain naming rules that you must follow when creating variables, including
the following:

 f Can contain letters, numbers, and underscores

 f First character must be a letter

 f No special characters in variable name other an underscore

 f Can't use Python keywords

There are a few dozen Python keywords that must be avoided including class, if, for,
while, and others.

Chapter 1

13

Some examples of legal variable names in Python:

 f featureClassParcel

 f fieldPopulation

 f field2

 f ssn

 f my_name

Some examples of illegal variable names in Python:

 f class (Python keyword)
 f return (Python keyword)
 f $featureClass (illegal character, must start with a letter)
 f 2fields (must start with a letter)
 f parcels&Streets (illegal character)

Python is a case-sensitive language, so pay particular attention to the capitalization and
naming of variables in your scripts. Case-sensitivity issues are probably the most common
source of errors for new Python programmers, so always consider this as a possibility when
you encounter errors in your code. Let's look at an example. The following is a list of three
variables; note that although each variable name is the same, the casing is different,
resulting in three distinct variables.

 f mapsize = "22x34"

 f MapSize = "8x11"

 f Mapsize = "36x48"

If you print these variables, you will get the following output:

print mapsize
>>> 22x34

print MapSize
>>> 8x11

print Mapsize
>>>36x48

Python variable names need to be consistent throughout the script. Best practice is to use
camel casing, wherein the first word of a variable name is all lowercase and then each
successive word begins with an uppercase letter. This concept is illustrated in the following
example with the variable name fieldOwnerName. The first word (field) is all lower case
followed by an uppercase letter for the second word (Owner) and third word (Name):

fieldOwnerName

Fundamentals of the Python Language for ArcGIS

14

In Python, variables are dynamically typed. Dynamic typing means that you can define a
variable and assign data to it without specifically defining that a variable name will contain
a specific type of data. Commonly used datatypes that can be assigned to variables include
the following:

Datatype Example value Code example
String "Streets" fcName = "Streets"

Number 3.14 percChange = 3.14

Boolean True ftrChanged = true

List Streets, Parcels,
Streams

lstFC = ["Streets",
"Parcels", "Streams"]

Dictionary '0':Streets,'1':Parcels dictFC =
{'0':Streets,'1':Parcels]

Object Extent spatialExt = map.extent

We will discuss each of these data-types in greater detail in the coming sections.

For instance, in C# you would need to define a variable's name and type before using it. This is
not necessary in Python. To use a variable, simply give it a name and value, and you can begin
using it right away. Python does the work behind the scenes to figure out what type of data is
being held in the variable.

For example, in C# .NET you would need to name and define the datatype for a variable before
working with the variable. In the following code example, we've created a new variable called
aTouchdown, which is defined as an integer variable, meaning that it can contain only integer
data. We then assign the value 6 to the variable:

int aTouchdown;
aTouchdown = 6;

In Python, this same variable can be created and assigned data through dynamic typing.
The Python interpreter is tasked with dynamically figuring out what type of data is assigned
to the variable:

aTouchdown = 6

Your Python geoprocessing scripts for ArcGIS will often need to reference the location of a
dataset on your computer or perhaps a shared server. References to these datasets will often
consist of paths stored in a variable. In Python, pathnames are a special case that deserve
some extra mention. The backslash character in Python is a reserved escape character and
a line continuation character, thus there is a need to define paths using two back slashes, a
single forward slash, or a regular single backslash prefixed with the letter r. These pathnames
are always stored as strings in Python. You'll see an example of this in the following section.

Chapter 1

15

Illegal path reference:

fcParcels = "c:\Data\Parcels.shp"

Legal path references:

fcParcels = "c:/Data/Parcels.shp"
fcParcels = "c:\\Data\\Parcels.shp"
fcParcels = r"c:\Data\Parcels.shp"

There may be times when you know that your script will need a variable, but don't necessarily
know ahead of time what data will be assigned to the variable. In these cases, you could
simply define a variable without assigning data to it. Data that is assigned to the variable
can also be changed while the script is running.

Variables can hold many different kinds of data including primitive datatypes such as strings
and numbers along with more complex data, such as lists, dictionaries and even objects.
We're going to examine the different types of data that can be assigned to a variable along
with various functions that are provided by Python for manipulating the data.

Built-in datatypes
Python has a number of built-in data-types. The first built-in type that we will discuss is the
string data-type. We've already seen several examples of string variables, but these types
of variables can be manipulated in a lot of ways, so let's take a closer look at this data-type.

Strings
Strings are ordered collections of characters used to store and represent text-based information.
This is a rather dry way of saying that string variables hold text. String variables are surrounded
by single or double quotes when being assigned to a variable. Examples could include a name,
feature class name, a Where clause, or anything else that can be encoded as text.

String manipulation
Strings can be manipulated in a number of ways in Python. String concatenation is one of
the more commonly used functions and is simple to accomplish. The + operator is used with
string variables on either side of the operator to produce a new string variable that ties the
two string variables together:

shpStreets = "c:\\GISData\\Streets" + ".shp"
print shpStreets

Running this code example produces the following result:

>>>c:\GISData\Streets.shp

Fundamentals of the Python Language for ArcGIS

16

String equality can be tested using Python's == operator, which is simply two equal signs
placed together. Don't confuse the equality operator with the assignment operator, which
is a single equal to sign. The equality operator tests two variables for equality, while the
assignment operator assigns a value to a variable:

firstName = "Eric"
lastName = "Pimpler"
firstName == lastname

Running this code example produces the following result:

>>>False

Strings can be tested for containment using the in operator, which returns True if the first
operand is contained in the second.

fcName = "Floodplain.shp"
print ".shp" in fcName
>>>True

I briefly mentioned that strings are an ordered collection of characters. What does this mean?
It simply means that we can access individual characters or a series of characters from
the string. In Python, this is referred to as indexing in the case of accessing an individual
character, and slicing in the case of accessing a series of characters.

Characters in a string are obtained by providing the numeric offset contained within square
brackets after a string. For example, you could obtain the first string character in the fc
variable by using the syntax fc[0]. Negative offsets can be used to search backwards from
the end of a string. In this case, the last character in a string is stored at index -1. Indexing
always creates a new variable to hold the character:

fc = "Floodplain.shp"
print fc[0]
>>>'F'
print fc[10]
>>>'.'
print fc[13]
>>>'p'

The following image illustrates how strings are an ordered collection of characters with the
first character occupying position 0, the second character occupying position 1, and each
successive character occupying the next index number:

Chapter 1

17

While string indexing allows you to obtain a single character from a string variable, string
slicing enables you to extract a contiguous sequence of strings. The format and syntax is
similar to indexing, but with the addition of a second offset, which is used to tell Python
how many characters to return.

The following code example provides an example of string slicing. The theString variable
has been assigned a value of Floodplain.shp. To obtain a sliced variable with the contents
of Flood, you would use the theString[0:5] syntax:

theString = "Floodplain.shp"
print theString[0:5]
>>>Flood

Python slicing returns the characters beginning with the first offset
up to, but not including, the second offset. This can be particularly
confusing for new Python programmers and is a common source of
error. In our example, the returned variable will contain the characters
Flood. The first character, which occupies position 0, is F. The last
character returned is index 4, which corresponds to the character d.
Notice that index number 5 is not included since Python slicing only
returns characters up to but not including the second offset.

Either of the offsets can be left off. This in effect creates a wild card. In the case of
theString[1:], you are telling Python to return all characters starting from the second
character to the end of the string. In the second case, theString[:-1], you are telling
Python to start at character zero and return all characters except the last.

Python is an excellent language for manipulating strings and there are many additional
functions that you can use to process this type of data. Most of these are beyond the scope
of this text, but in general all of the following string manipulation functions are available:

 f String length
 f Casing functions for conversion to upper and lower case
 f Removal of leading and trailing whitespace
 f Finding a character within a string
 f Replacement of text
 f Splitting into a list of words based on a delimiter
 f Formatting

Numbers
Python also has built-in support for numeric data including int, long, float, and complex
values. Numbers are assigned to variables in much the same way as strings, with the exception
that you do not enclose the value in quotes and obviously it must be a numeric value.

Fundamentals of the Python Language for ArcGIS

18

Python supports all the commonly used numeric operators including addition, subtraction,
multiplication, division, and modulus or remainder. In addition, functions for returning the
absolute value, conversion of strings to numeric datatypes, and rounding are also available.

Although Python provides a few built-in mathematical functions, the math module can be
used to access a wide variety of more advanced math functions. To use these functions,
you must specifically import the math module as follows:

import math

Functions provided by the math module include those for returning the ceiling and floor
of a number, the absolute value, trigonometric functions, logarithmic functions, angular
conversion, and hyperbolic functions.

Lists
A third built-in datatype provided by Python is the list. A list is an ordered collection of
objects that can hold any type of data supported by Python as well as being able to hold
multiple datatypes at the same time. This could be numbers, strings, other lists, dictionaries,
or objects. So, for instance, a list variable could hold numeric and string data at the same
time. Lists are zero-based, with the first element in the list occupying position 0. Each
successive object in the list is incremented by one. In addition, lists have the special
capability of dynamically growing and shrinking.

Lists are created by assigning a series of values enclosed by brackets. To pull a value from a
list, simply use an integer value in brackets along with the variable name. The following code
example provides an illustration of this. You can also use slicing with lists to return multiple
values. Slicing a list always returns a new list variable.

fcList = ["Hydrants", "Water Mains", "Valves", "Wells"]
fc = fcList[0]
print fc
>>>Hydrants
fc = fcList[3]
print fc
>>>Wells

Lists are dynamic in nature, enabling them to grow, shrink, and change contents. This is
all done without the need to create a new copy of the list. Changing values in a list can be
accomplished either through indexing or slicing. Indexing allows you to change a single value,
while slicing allows you to change multiple list items.

Chapter 1

19

Lists have a number of methods that allow you to manipulate the values that are part of the
list. You can sort the contents of the list in either an ascending or descending order through
the use of the sort() method. Items can be added to a list with the append() method,
which adds an object to the end of the list, and with the insert() method which inserts
an object at a position within the list. Items can be removed from a list with the remove()
method which removes the first occurrence of a value from the list, or the pop() method
which removes and returns the object last added to the list. The contents of the list can also
be reversed with the reverse() method.

Tuples
Tuples are similar to lists but with some important differences. Just like lists, tuples contain a
sequence of values. The only difference is that tuples can't be changed, and they are referred to
with parentheses instead of square brackets. Creating a tuple is as simple as placing a number
of comma-separated values inside parentheses, as shown in the following code example:

fcTuples = ("Hydrants", "Water Mains", "Valves", "Wells")

Like lists, tuple indices start with an index value of 0. Access to values stored in a tuple occurs
in the same way as lists. This is illustrated in the following code example:

fcTuples = ("Hydrants", "Water Mains", "Valves", "Wells")
print fcTuples[1]
>>>Water Mains

Tuples are typically used in place of a list when it is important for the contents of the structure
to be static. You can't insure this with a list, but you can with a tuple.

Dictionaries
Dictionaries are a second type of collection object in Python. They are similar to lists, except
that dictionaries are an unordered collection of objects. Instead of fetching objects from
the collection through the use of an offset, items in a dictionary are stored and fetched by a
key. Each key in a dictionary has an associated value. Similar to lists, dictionaries can grow
and shrink in place through the use of methods on the dictionary class. In the following
code example, you will learn to create and populate a dictionary and see how values can
be accessed through the use of a key. Dictionaries are created with the use of curly braces.
Inside these braces each key is surrounded by quotes followed by a colon and then a value
that is associated with the key. These key/value pairs are separated by commas:

##create the dictionary
dictLayers = {'Roads': 0, 'Airports': 1, 'Rail': 2}

##access the dictionary by key
dictLayers['Airports']
>>>1
dictLayers['Rail']
>>>2

Fundamentals of the Python Language for ArcGIS

20

Basic dictionary operations include getting the number of items in a dictionary, getting a value
using the key, determining if a key exists, converting the keys to a list, and getting a list of
values. Dictionary objects can be changed, expanded, and shrunk in place. What this means
is that Python does not have to create a new dictionary object to hold the altered version
of the dictionary. Assigning values to a dictionary key is accomplished by stating the key value
in brackets and setting it equal to some value.

Unlike lists, dictionaries can't be sliced due to the fact that their contents are
unordered. Should you have the need to iterate over all values in a dictionary,
simply use the keys() method, which returns a collection of all the keys in
the dictionary and which can then be used individually to set or get the value.

Classes and objects
Classes and objects are a fundamental concept in object-oriented programming. While
Python is more of a procedural language, it also supports object-oriented programming. In
object-oriented programming, classes are used to create object instances. You can think of
classes as blueprints for the creation of one or more objects. Each object instance has the
same properties and methods, but the data contained in an object can and usually will differ.
Objects are complex datatypes in Python composed of properties and methods, and can be
assigned to variables just like any other datatype. Properties contain data associated with an
object, while methods are actions that an object can perform.

These concepts are best illustrated with an example. In ArcPy, the Extent class is a rectangle
specified by providing the coordinate of the lower-left corner and the coordinate of the upper-
right corner in map units. The Extent class contains a number of properties and methods.
Properties include XMin, XMax, YMin, and YMax, spatialReference, and others. The
minimum and maximum of x and y properties provide the coordinates for the extent rectangle.
The spatialReference property holds a reference to a SpatialReference object for the
Extent. Object instances of the Extent class can be used both to set and get the values of
these properties through dot notation. An example of this is seen in the following code example:

import arcpy
fc = "c:/ArcpyBook/data/TravisCounty/TravisCounty.shp"

Fetch each feature from the cursor and examine the extent properties
and spatial reference
for row in arcpy.da.SearchCursor(fc, ["SHAPE@"]):
 # get the extent of the county boundary
 ext = row[0].extent

Chapter 1

21

 # print out the bounding coordinates and spatial reference
 print "XMin: " + ext.XMin
 print "XMax: " + ext.XMax
 print "YMin: " + ext.YMin
 print "YMax: " + ext.YMax
 print "Spatial Reference: " + ext.spatialReference.name

Running this script yields the following output:

XMin: 2977896.74002
XMax: 3230651.20622
YMin: 9981999.27708
YMax:10200100.7854
Spatial Reference: NAD_1983_StatePlane_Texas_Central_FIPS_4203_Feet

The Extent class also has a number of methods, which are actions that an object can
perform. In the case of this particular object, most of the methods are related to performing
some sort of geometric test between the Extent object and another geometry. Examples
include contains(), crosses(), disjoint(), equals(), overlaps(), touches(),
and within().

One additional object-oriented concept that you need to understand is dot notation. Dot
notation provides a way of accessing the properties and methods of an object. It is used
to indicate that a property or method belongs to a particular class.

The syntax for using the dot notation includes an object instance followed by a dot and then
the property or method. The syntax is the same regardless of whether you're accessing a
property or a method. A parenthesis, and zero or more parameters, at the end of the word
following the dot indicates that a method is being accessed. Here are a couple of examples
to better illustrate this concept:

Property: extent.XMin
Method: extent.touches()

Statements
Each line of code that you write with Python is known as a statement. There are many
different kinds of statements, including those that create and assign data to variables,
decision support statements that branch your code based on a test, looping statements
that execute a code block multiple times, and others. There are various rules that your code
will need to follow as you create the statements that are part of your script. You've already
encountered one type of statement: variable creation and assignment.

Fundamentals of the Python Language for ArcGIS

22

Decision support statements
The if/elif/else statement is the primary decision making statement in Python and
tests for a true/false condition. Decision statements enable you to control the flow of your
programs. Here are some example decisions that you can make in your code: if the variable
holds a point feature class, get the X, Y coordinates; if the feature class name equals Roads
then get the Name field.

Decision statements such as if/elif/else test for a true/false condition. In Python, a "true"
value means any nonzero number or nonempty object. A "false" value indicates "not true" and
is represented in Python with a zero number or empty object. Comparison tests return values
of one or zero (true or false). Boolean and/or operators return a true or false operand value.

if fcName == 'Roads':
 gp.Buffer_analysis(fc, "c:\\temp\\roads.shp", 100)
elif fcName == 'Rail':
 gp.Buffer_analysis(fc, "c:\\temp\\rail.shp", 50)
else:
 print "Can't buffer this layer"
)

Python code must follow certain syntax rules. Statements execute one after another, until your
code branches. Branching typically occurs through the use of if/elif/else. In addition,
the use of looping structures, such as for and while, can alter the statement flow. Python
automatically detects statement and block boundaries, so there is no need for braces or
delimiters around your blocks of code. Instead, indentation is used to group statements in a
block. Many languages terminate statements with the use of a semicolon, but Python simply
uses the end of line character to mark the end of a statement. Compound statements include a
":" character. Compound statements follow the pattern: header terminated by a colon. Blocks of
code are then written as individual statements and are indented underneath the header.

Statement indentation deserves a special mention as it is critical to the way Python interprets
code. As I mentioned, a contiguous section of code is detected by Python through the use of
indentation. By default, all Python statements should be left-justified until looping, decision
support, try/except, and with statements are used. This includes for and while loops,
if/else statements, try/except statements, and with statements. All statements
indented with the same distance belong to the same block of code until that block is ended
by a line less indented.

Chapter 1

23

Looping statements
Looping statements allow your program to repeat lines of code over and over as necessary.
while loops repeatedly execute a block of statements as long as the test at the top of the
loop evaluates to true. When the condition test evaluates to false, Python begins interpreting
code immediately after the while loop. In the next code example, a value of 10 has been
assigned to the variable x. The test for the while loop then checks to see if x is less than
100. If x is less than 100 the current value of x is printed to the screen and the value of x is
incremented by 10. Processing then continues with the while loop test. The second time, the
value of x will be 20; so the test evaluates to true once again. This process continues until x
is larger than 100. At this time, the test will evaluate to false and processing will stop. It is very
important that your while statements have some way of breaking out of the loop. Otherwise,
you will wind up in an infinite loop. An infinite loop is a sequence of instructions in a computer
program that loops endlessly, either due to the loop having no terminating condition, having
one that can never be met, or one that causes the loop to start over:

x = 10
while x < 100:
 print x
 x = x + 10

for loops execute a block of statements a predetermined number of times. They come in two
varieties—a counted loop for running a block of code a set number of times, and a list loop
that enables you to loop through all objects in a list. The list loop in the following example
executes once for each value in the dictionary and then stops looping:

dictLayers = {"Roads":"Line","Rail":"Line","Parks":"Polygon"}
lstLayers = dictLayers.keys()
for x in lstLayers:
 print dictLayers[x]

There are times when it will be necessary for you to break out of the execution of a loop. The
break and continue statements can be used to do this. break jumps out of the closest
enclosing loop while continue jumps back to the top of the closest enclosing loop. These
statements can appear anywhere inside the block of code.

Try statements
A try statement is a complete, compound statement that is used to handle exceptions.
Exceptions are a high-level control device used primarily for error interception or triggering.
Exceptions in Python can either be intercepted or triggered. When an error condition occurs
in your code, Python automatically triggers an exception, which may or may not be handled
by your code. It is up to you as a programmer to catch an automatically triggered exception.
Exceptions can also be triggered manually by your code. In this case, you would also provide
an exception handling routine to catch these manually triggered exceptions.

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Control_flow#Loops

Fundamentals of the Python Language for ArcGIS

24

There are two basic types of try statements: try/except/else and try/finally. The
basic try statement starts with a try header line followed by a block of indented statements,
then one or more optional except clauses that name exceptions to be caught, and an optional
else clause at the end:

import arcpy
import sys

inFeatureClass = arcpy.GetParameterAsText(0)
outFeatureClass = arcpy.GetParameterAsText(1)

try:
 # If the output feature class exists, raise an error

 if arcpy.Exists(inFeatureClass):
 raise overwriteError(outFeatureClass)
 else:
 # Additional processing steps

except overwriteError as e:
 # Use message ID 12, and provide the output feature class
 # to complete the message.

 arcpy.AddIDMessage("Error", 12, str(e))

The try/except/else statement works as follows. Once inside a try statement, Python
marks the fact that you are in a try block and knows that any exception condition that
occurs at this point will be sent to the various except statements for handling. If a matching
exception is found, the code block inside the except block is executed. The code then picks
up below the full try statement. The else statements are not executed in this case. Each
statement inside the try block is executed. Assuming that no exception conditions occur, the
code pointer will then jump to the else statement and execute the code block contained by
the else statement before moving to the next line of code below the try block.

The other type of try statement is the try/finally statement which allows for finalization
actions. When a finally clause is used in a try statement, its block of statements always
run at the very end, whether an error condition occurs or not.

The try/finally statement works as follows. If an exception occurs, Python runs the try
block, then the finally block, and then execution continues past the entire try statement.
If an exception does not occur during execution, Python runs the try block, then the finally
block. This is useful when you want to make sure an action happens after a code block runs,
regardless of whether an error condition occurs. Cleanup operations, such as closing a file or a
connection to a database are commonly placed inside a finally block to ensure that they are
executed regardless of whether an exception occurs in your code:

Chapter 1

25

import arcpy
from arcpy import env

try:
 if arcpy.CheckExtension("3D") == "Available":
 arcpy.CheckOutExtension("3D")
 else:
 # Raise a custom exception
 raise LicenseError

 env.workspace = "D:/GrosMorne"
 arcpy.HillShade_3d("WesternBrook", "westbrook_hill", 300)
 arcpy.Aspect_3d("WesternBrook", "westbrook_aspect")

except LicenseError:
 print "3D Analyst license is unavailable"
except:
 print arcpy.GetMessages(2)
finally:
 # Check in the 3D Analyst extension
 arcpy.CheckInExtension("3D")

with statements
The with statement is handy when you have two related operations that need to be executed
as a pair with a block of code in between. A common scenario for using with statements is
opening, reading, and closing a file. Opening and closing a file are the related operations, and
reading a file and doing something with the contents is the block of code in between. When
writing geoprocessing scripts with ArcGIS, the new cursor objects introduced with version
10.1 of ArcGIS are ideal for using with statements. We'll discuss cursor objects in great
detail in a later chapter, but I'll briefly describe these objects now. Cursors are an in-memory
copy of records from the attribute table of a feature class or table. There are various types of
cursors. Insert cursors allow you to insert new records, search cursors are a read-only copy of
records, and update cursors allow you to edit or delete records. Cursor objects are opened,
processed in some way, and closed automatically using a with statement.

The closure of a file or cursor object is handled automatically by the with statement resulting
in cleaner, more efficient coding. It's basically like using a try/finally block but with fewer
lines of code. In the following code example, the with block is used to create a new search
cursor, read information from the cursor, and implicitly close the cursor:

import arcpy

fc = "c:/data/city.gdb/streets"

Fundamentals of the Python Language for ArcGIS

26

For each row print the Object ID field, and use the SHAPE@AREA
token to access geometry properties

with arcpy.da.SearchCursor(fc, ("OID@", "SHAPE@AREA")) as cursor:
 for row in cursor:
 print("Feature {0} has an area of {1}".format(row[0], row[1]))

File I/O
You will often find it necessary to retrieve or write information to files on your computer. Python
has a built-in object type that provides a way to access files for many tasks. We're only going
to cover a small subset of the file manipulation functionality provided, but we'll touch on the
most commonly used functions including opening and closing files, and reading and writing
data to a file.

Python's open() function creates a file object, which serves as a link to a file residing on your
computer. You must call the open() function on a file before reading and/or writing data to
a file. The first parameter for the open() function is a path to the file you'd like to open. The
second parameter corresponds to a mode, which is typically read (r), write (w), or append (a).
A value of r indicates that you'd like to open the file for read only operations, while a value of
w indicates you'd like to open the file for write operations. In the event that you open a file that
already exists for write operations, this will overwrite any data currently in the file, so you must
be careful with write mode. Append mode (a) will open a file for write operations, but instead
of overwriting any existing data, it will append the new data to the end of the file. The following
code example shows the use of the open() function for opening a text file in a read-only mode:

f = open('Wildfires.txt','r')

After you've completed read/write operations on a file, you should always close the file with
the close() method.

After a file has been opened, data can be read from it in a number of ways and using various
methods. The most typical scenario would be to read data one line at a time from a file
through the readline() method. readline() can be used to read the file one line at a
time into a string variable. You would need to create a looping mechanism in your Python code
to read the entire file line by line. If you would prefer to read the entire file into a variable, you
can use the read() method, which will read the file up to the end of file (EOF) marker. You
can also use the readlines() method to read the entire contents of a file, separating each
line into individual strings, until the EOF is found.

Chapter 1

27

In the following code example, we have opened a text file called Wildfires.txt in
read-only mode and used the readlines() method on the file to read its entire contents
into a variable called lstFires, which is a Python list containing each line of the file as a
separate string value in the list. In this case, the Wildfire.txt file is a comma-delimited
text file containing the latitude and longitude of the fire along with the confidence values for
each file. We then loop through each line of text in lstFires and use the split() function
to extract the values based on a comma as the delimiter, including the latitude, longitude, and
confidence values. The latitude and longitude values are used to create a new Point object,
which is then inserted into the feature class using an insert cursor:

import arcpy, os
try:

 arcpy.env.workspace = "C:/data/WildlandFires.mdb"
 # open the file to read
 f = open('Wildfires.txt','r')

 lstFires = f.readlines()
 cur = arcpy.InsertCursor("FireIncidents")

 for fire in lstFires:
 if 'Latitude' in fire:
 continue
 vals = fire.split(",")
 latitude = float(vals[0])
 longitude = float(vals[1])
 confid = int(vals[2])
 pnt = arcpy.Point(longitude,latitude)
 feat = cur.newRow()
 feat.shape = pnt
 feat.setValue("CONFIDENCEVALUE", confid)
 cur.insertRow(feat)
 except:
 print arcpy.GetMessages()
finally:
 del cur
 f.close()

Fundamentals of the Python Language for ArcGIS

28

Just as is the case with reading files, there are a number of methods that you can use to
write data to a file. The write() function is probably the easiest to use and takes a single
string argument and writes it to a file. The writelines() function can be used to write out
the contents of a list structure to a file. In the following code example, we have created a list
structure called fcList, which contains a list of feature classes. We can write this list to a file
using the writelines() method:

outfile = open('c:\\temp\\data.txt','w')
fcList = ["Streams", "Roads", "Counties"]
outfile.writelines(fcList)

Summary
In this chapter, we covered some of the fundamental Python programming concepts that
you'll need to understand before you can write effective geoprocessing scripts. We began the
chapter with an overview of the IDLE development environment for writing and debugging
Python scripts. You learned how to create a new script, edit existing scripts, check for syntax
errors, and execute the script. We also covered the basic language constructs including
importing modules, creating and assigning variables, if/else statements, looping statements,
and the various data-types including strings, numbers, Booleans, lists, dictionaries, and
objects. You also learned how to read and write text files.

In the next chapter, you will learn the basic techniques for writing geoprocessing scripts for
ArcGIS with Python. You'll learn how to use the embedded Python window in ArcGIS Desktop,
import the ArcPy package to your scripts, execute ArcToolbox tools from your scripts, use
the help system when writing scripts, use variables to store data, and access the various
ArcPy modules.

2
Writing Basic

Geoprocessing
Scripts with ArcPy

In this chapter, we will cover the following recipes:

 f Using the ArcGIS Python window

 f Accessing ArcPy with Python

 f Executing tools from a script

 f Using ArcGIS Desktop help

 f Using variables to store data

 f Accessing ArcPy modules with Python

Introduction
Geoprocessing tasks tend to be time consuming and repetitive, and often need to be run
on a periodic basis. Frequently, many data layers and functions are involved. The ArcPy
Python site package for ArcGIS provides a set of tools and execution environments that
can be used to transform your data into meaningful results. Using scripts you can
automate your geoprocessing tasks and schedule them to run when it is most
convenient for your organization.

Writing Basic Geoprocessing Scripts with ArcPy

30

ArcGIS provides a geoprocessing framework for the purpose of automating your repetitive GIS
tasks through a set of tools and execution environments for these tools. All tools operate on
an input dataset, which you supply and transform in some way (depending upon the nature
of the tool used) to produce a new output dataset. This new output dataset can then, if
necessary, be used as the input dataset to additional geoprocessing tools in a larger workflow
for your tasks. There are many tools provided by the ArcGIS geoprocessing framework, each
designed to provide specific functionality.

While there are many different environments that you can use to write your geoprocessing
scripts with Python, this book will focus on the use of the built-in ArcGIS Python window and
the Python IDLE editor.

Using the ArcGIS Python window
In this recipe, you'll learn how to use the ArcGIS Python window. In Chapter 1, Fundamentals of
the Python Language for ArcGIS, you learned how to use the IDLE development environment
for Python, so this chapter will give you an alternative for writing your geoprocessing scripts.
Either development environment can be used but it is common for people to start writing
scripts with the ArcGIS Desktop Python window and then move on to IDLE when scripts become
more complex. I should also mention that there are many other development environments
that you may want to consider, including PythonWin, Wingware, Komodo, and others. The
development environment you choose is really a matter of preference.

Getting ready
The new Python window is an embedded, interactive Python window in ArcGIS Desktop 10,
that is ideal for testing small blocks of code, learning Python basics, building quick and
easy workflows, and executing geoprocessing tools. However, as your scripts become more
complex, you'll quickly find the need for a more robust development environment. By default,
IDLE is installed with ArcGIS Desktop, so this is a logical next choice for many. For new
programmers, though, the ArcGIS Python window is a great place to start!

The ArcGIS Python window has a number of capabilities in addition to being the location for
writing your code. You can save the content of the window to a Python script file on a disk or
load an existing Python script into the window. The window can be either pinned or floating.
While floating, the window can be expanded or contracted as you wish. The window can also
be pinned to various parts of the ArcGIS display. You can also format the font and text colors
displayed in the window by right-clicking on the window and selecting Format.

Chapter 2

31

How to do it…
The Python window can be opened by clicking on the Python window button on the main
ArcGIS Desktop toolbar.

1. Open c:\ArcpyBook\Ch2\Crime_Ch2.mxd with ArcMap.

You don't have to specifically open Crime_Ch2.mxd. Any map
document file can be used with the Python window.

2. Click on the Python window button from the main ArcMap toolbar. The Python window
will be displayed as shown in the following screenshot. This is a floating window, so
you can resize as needed and also dock it at various places on the ArcMap interface:

The Python window is essentially a shell window that allows you to type in statements
one line at a time, just after the line input characters >>>. On the right-hand side of
the divider, you will find a help window.

3. Load an existing script by right-clicking inside the Python window and selecting
Load from the menu. Navigate to the c:\ArcpyBook\Ch2 directory and select
ListFields.py to load a sample script.

Writing Basic Geoprocessing Scripts with ArcPy

32

You can also format the font and text colors displayed in the window by right-clicking
on the window and selecting Format. You will be provided with White and Black
themes; you can select fonts and colors individually:

Click on the Set Black Theme button to see an example. If you spend a lot of time writing
code, you may find that darker themes are easier on your eyes:

Accessing ArcPy with Python
Before you can take advantage of all the geoprocessing functionality provided by ArcPy, you
must first import the package into your script. This will always be the first line of code in every
geoprocessing script that you write.

Chapter 2

33

Getting ready
ArcPy is a Python site package that is part of the ArcGIS 10 release, and fully encompasses
the functionality provided with the arcgis scripting module at ArcGIS 9.2, which further
enhances its capabilities. With ArcPy you have access to the geoprocessing tools, extensions,
functions, and classes for working with ESRI GIS data. ArcPy provides code-completion
and integrated documentation for the modules, classes, and functions. ArcPy can also
be integrated with other Python modules to widen the scope of its capabilities. All ArcGIS
geoprocessing scripts that you write with Python must first provide a reference to ArcPy.

How to do it…
Follow these steps to import the arcpy site package into the ArcGIS Python window:

1. Open the c:\ArcpyBook\Ch2\Crime_Ch2.mxd file with ArcMap.

2. Click on the Python window button to display a shell window where you can write the
Python code.

3. In the Python window, import the arcpy package and press the Enter key on your
keyboard. After each statement that you enter in the Python window, you will press
the Enter key. You will include this line of code in every single script that you write, so
get used to it! This import statement is what gives you access to all the functionality
provided by ArcPy.

Technically, you don't have to include the import arcpy
statement when working inside the ArcMap Python window. It's
inherent to this window. However, it is required when creating
standalone scripts in IDLE, PythonWin, or any other integrated
development environment. It's also a good habit to get into as
many of your scripts will ultimately be run as standalone scripts.

Writing Basic Geoprocessing Scripts with ArcPy

34

4. ArcPy also provides code-completion functionality that makes your life as a
programmer much easier. On the second line, begin by typing arcpy and then a
dot. ArcPy is an object-oriented package, which means that you access the properties
and methods of an object using the dot notation. Notice that a drop-down list of
available items is provided. These are the tools, functions, classes, and extensions
that are available on this particular object. All objects have their own associated
items, so the list of items presented will differ depending on the object that you have
currently selected:

5. This is an auto-filtering list, so as you begin typing the name of the tool, function,
class, or extension, the list will be filtered by what you have typed:

6. You can choose to have the Python window auto-complete the text for you by selecting
an item from the list using your mouse or by using the arrow keys to highlight your
choice, and then using the Tab key to enter the command. This auto-completion
feature makes you a faster, more efficient programmer. Not only is it easy to use, but
it also dramatically cuts down the number of typos in your code.

Chapter 2

35

How it works…
Once the ArcPy module has been imported, you get access to the geoprocessing tools,
extensions, functions, and classes for working with ESRI GIS data. One of the most important
aspects of ArcPy is that it provides access to all of the geoprocessing tools available, based
on the license level of ArcGIS Desktop currently in use. The tools available to your script will
vary depending upon whether you are using the ArcGIS Basic, Standard, or Advanced license
level, with the Basic level providing the fewest tools and the Advanced level providing a
complete set of tools.

Executing tools from a script
As an ArcGIS user, you have almost certainly used the many available tools in ArcToolbox to
accomplish your geoprocessing tasks. Some examples include Clip, Buffer, Feature Class to
Feature Class, Add Field, and many more. Your scripts can execute any of the tools found in
ArcToolbox. Remember that the tools available to you as a programmer are dependent upon
the license level of ArcGIS Destkop that you are using. These tasks can be automated through
the creation of a Python script that executes these tools programmatically.

How to do it…
1. Follow these steps to learn how to execute a geoprocessing tool from your script.

Open c:\ArcpyBook\Ch2\TravisCounty.mxd with ArcMap.

2. Open the Python window.

3. Import the arcpy package:
import arcpy

4. Set the workspace. We haven't discussed the env class yet. Environment settings for
ArcGIS are exposed as properties of this env class, which is a part of arcpy. One
of the properties of the env class is workspace, which defines the current working
directory for data input and output. In this case, it will be the directory where we'll
write the output dataset from our tool:
arcpy.env.workspace = "c:/ArcpyBook/data/"

Writing Basic Geoprocessing Scripts with ArcPy

36

5. We're going to use the Buffer tool from the Analysis Tools toolbox to buffer the
Streams layer seen in the active data frame in ArcMap. Open ArcToolbox and find this
tool, as shown in the following screenshot:

6. Double-click on the Buffer tool to display the interface shown in the following
screenshot. Most tools have one or more input parameters that must be supplied for
the tool to execute. Whether you're running the tool from the user interface or from a
Python script, you must always supply these required parameters:

Chapter 2

37

7. Close the Buffer tool.

8. Execute the Buffer tool in the Python window. Use the code-completion feature of
the Python window to help you as well as the tool help displayed in the window on
the right.

This will buffer the Streams layer by 50 meters to create a new Streams_Buff
polygon layer:

arcpy.Buffer_analysis("Streams", "Streams_Buff", "50 Meters")

9. Use your ArcMap zoom and pan tools to get a better look at the output dataset, as
shown in the following screenshot:

Writing Basic Geoprocessing Scripts with ArcPy

38

How it works…
All geoprocessing tools available to your script are defined as dynamic functions from
the main arcpy object. Each tool that you execute from a script must follow a specific
syntax that first defines the tool name, followed by an underscore, and then the alias for
the toolbox name. In our example, the Buffer tool is located in the Analysis Tools toolbox,
which has an alias of analysis. This is done because it is possible for more than one tool
to have the same name. A unique reference for each tool is generated using the syntax
<toolname>_<toolbox_alias>.

Getting the toolbox alias is easy in ArcGIS Desktop. Find the toolbox associated with the tool
and right-click on the toolbox name. Select Properties. In the Properties dialog box that is
displayed, find the Alias textbox. You will see the following alias when referring to a particular
tool in your geoprocessing scripts:

Chapter 2

39

In addition to the dynamic functions that represent geoprocessing tools, there are many
additional functions available on the arcpy class that are not geoprocessing tools. Functions
for creating cursors, listing datasets, describing datasets, working with environment settings,
messaging, and many others are provided. We'll cover many of these functions as we move
through the book.

There's more…
Geoprocessing workflows often require multiple steps that require the use of one or more
geoprocessing tools. You can more efficiently and effectively develop scripts by first creating
an outline for your script. This outline will help you consider the task at hand and identify
the geoprocessing tools that will be used. Outlines don't have to be complex undertakings.
You can simply draw a diagram of the workflow and then implement your code based on this
workflow. The point is to do some planning ahead of time before you actually start coding.

Using ArcGIS Desktop help
The ArcGIS Desktop help system is an excellent resource for obtaining information about any
available tool. Each tool is described in detail on a unique page. The help system is available
through ArcGIS Desktop or online.

Getting ready
In addition to containing basic descriptive information about each tool, the help system also
includes information of interest to Python programmers, including syntax and code examples
that provide detailed information about how the tool can be used in your scripts. In this recipe,
you will learn how to access the ArcGIS Desktop help system to obtain syntax information and
code examples.

Writing Basic Geoprocessing Scripts with ArcPy

40

How to do it...
Follow these steps to learn how to use the ArcGIS Desktop help system to access syntax
information about a tool as well as a code example showing how the tool is used in a script.

1. If necessary, open ArcMap and select Help | ArcGIS Desktop Help from the
main menu.

2. Select the Contents tab.

3. Select Geoprocessing | Tool reference. The tools are grouped according to toolbox
just as they are in ArcToolbox.

4. Select Analysis toolbox and then Proximity toolset.

5. Click on the Buffer tool. You should see the Buffer tool help displayed, as shown in
the following screenshot:

Chapter 2

41

6. Scroll down to the Syntax section, as shown in the following screenshot:

7. This section defines the syntax for how the tool should be called from your script. In
this case, the syntax is as follows:
Buffer_analysis (in_features, out_feature_class, buffer_distance_
or_field, {line_side}, {line_end_type}, {dissolve_option},
{dissolve_field})

8. Scroll down to the Code Sample section. Here, you will find one or more code
samples showing you how the tool can be used in your scripts. I always recommend
taking a look at these samples before writing your scripts.

How it works...
The help system for each tool contains several sections including a summary, illustration,
usage, syntax, code sample, environments, related topics, and licensing information. As a
programmer, you will primarily be interested in the syntax and code sample sections.

When looking at the syntax section, notice that you call each tool using a combination of the
name followed by an underscore and finally the alias for the toolbox where the tool resides.
We discussed this briefly in a recipe earlier in this chapter.

Writing Basic Geoprocessing Scripts with ArcPy

42

Tools typically accept one or more parameters, which are passed into the tool inside
parentheses. Parameters can be either required or optional. In this case, the Buffer tool
includes three required parameters: the input feature, an output feature class, and a
distance. Required parameters are listed first and are not enclosed by any special characters.
Optional parameters, on the other hand, are enclosed by curly braces and will follow any
required parameters. The Buffer tool contains several optional parameters including the line
side, line end type, dissolve option, and dissolve field. Notice that each of these parameters is
enclosed by curly braces. You do not have to include these parameters when calling a tool for
it to execute.

You should also examine the syntax information in greater detail to determine the data-type
that should be passed in for each parameter. For example, the buffer_distance_or_
field parameter can accept a data-type that is either a linear unit or a field. Therefore, you
can supply a numeric value for this parameter or a Field object that represents an attribute
field containing distance information.

Always review the syntax for each tool before using it in your code to make sure that you have
the right parameters in the right order and of the right data type.

I recommend taking a look at the code samples as well since they will frequently give you a
starting point for your script. Often you will find that you can copy and paste at least a portion
of the sample into your own script and then alter the script to suit your needs. This can make
you a more efficient programmer and for learning purposes it is helpful to take a look at other
scripts and examine the script line-by-line to determine how the script works.

Using variables to store data
In Chapter 1, Fundamentals of the Python Language for ArcGIS, we covered the topic of
variables, so you should have a basic understanding of these structures. Variables are given a
name and assigned a data value in your scripts. These named variables occupy space in your
computer's memory and the data contained within these structures can change while a script
is running. After the script has finished the memory space occupied by these variables is then
released and can be used for other operations.

Getting ready
When writing geoprocessing scripts with Python there will be many times when you will
need to create variables to hold data of one type or another. This data can then be used
in your script as input parameters for tools and functions, as intermediate data for internal
processing, to hold paths to datasets, and for other reasons. In addition, many of the ArcPy
functions and tools also return data that can be stored in a variable for further use in your
script. In this recipe, you will learn the basic techniques for creating variables and assigning
data to them.

Chapter 2

43

How to do it...
Follow these steps to create a script that contains variables that are hardcoded with values
and that are returned from a function:

1. Open IDLE and create a new script window.

2. Save the script to c:\ArcpyBook\Ch2\WorkingWithVariables.py.

3. Import the arcpy package:
import arcpy

4. Create a variable called path and assign a value to it:
path = "c:/ArcpyBook/data"

5. Use the newly-created variable to set the workspace:
arcpy.env.workspace = path

6. Call the ListFields() function and assign the returned value to a new variable
called fields:
fields = arcpy.ListFields("Building_Permits.shp")

7. Start a for loop to process each of the field objects contained within the fields
variable:
for fld in fields:

8. Print the name of each field:
print fld.name

9. The entire script should appear as follows:
import arcpy
path = "c:/ArcpyBook/data"

arcpy.env.workspace = path
fields = arcpy.ListFields("Building_Permits.shp")
for fld in fields:
 print fld.name

10. Save the script.

Writing Basic Geoprocessing Scripts with ArcPy

44

How it works...
We created three variables in this script. The first variable, path, was created and assigned
a hard-coded value with a data path. This is an example of a literal variable, meaning that
they literally mean exactly what they say. They are distinguished from variables, whose values
are not directly determined by their name. The second variable, fields, is created from the
returned value of the ListFields() function and is a Python list object containing one or
more Field objects. Each Field represents a field from the attribute table of a feature class
or a standalone table. The final variable is a dynamic variable called fld. As the for loop
cycles through the list returned by the ListFields() function, each Field is assigned to
the fld variable. The name of each field is then printed to the screen.

Accessing ArcPy modules with Python
Up to this point, we have covered some basic concepts related to ArcPy. In addition to the
basic ArcPy site package, there are a number of modules that you can use to access specific
functionality. These modules must be specifically imported into your scripts before you can
use the functionality provided. In this recipe, you will learn how to import these modules.

Getting ready
In addition to providing access to tools, functions, and classes, ArcPy also provides several
modules. Modules are purpose-specific Python libraries containing functions and classes. The
modules include a Mapping module (arcpy.mapping), a Data Access module (arcpy.da), a
Spatial Analyst module (arcpy.sa), a Geostatistical module (arcpy.ga), a Network Analyst
module (arcpy.na), and a Time module (arcpy.time). To use the functions and classes
included with each of these modules you must specifically import their associated libraries.

How to do it…
Follow these steps to learn how to use the functions and classes provided by the arcpy.
mapping module:

1. Open c:\ArcpyBook\Ch2\Crime_Ch2.mxd with ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Get a reference to the current map document (Crime_Ch2.mxd):
mxd = mapping.MapDocument("CURRENT")

Chapter 2

45

5. Call the arcpy.mapping.ListLayers function:

print mapping.ListLayers(mxd)

This will return a list of all layers in the map document and print these to the shell
window:

[<map layer u'City of Austin Bldg Permits'>, <map layer
u'Hospitals'>, <map layer u'Schools'>, <map layer u'Streams'>,
<map layer u'Streets'>, <map layer u'Streams_Buff'>, <map layer
u'Floodplains'>, <map layer u'2000 Census Tracts'>, <map layer
u'City Limits'>, <map layer u'Travis County'>]

Access to all the functions and objects available in the Mapping module is done in the
same way.

How it works…
Each of the modules provided by ArcPy gives access to functionality that fills a specific
purpose. For example, the ArcPy Mapping module provides access to functions that allow you
to manage map documents and layer files. The functions and objects in this module all relate
in some way to managing these files.

3
Managing Map

Documents and Layers

In this chapter, we will cover the following recipes:

 f Referencing the current map document

 f Referencing map documents on disk

 f Accessing a data frame

 f Getting a list of layers in a map document

 f Restricting the list of layers

 f Changing the map extent

 f Getting a list of tables

 f Adding layers to a map document

 f Inserting layers into a map document

 f Updating layer symbology

 f Updating layer properties

Introduction
The ArcPy mapping module is new to ArcGIS 10 and brings some really exciting features for
mapping automation, including the ability to manage map documents and layer files as well
as the data within these files. Support is provided for automating map export and printing,
for the creation of PDF map books and publication of map documents to ArcGIS Server map
services. This is an incredibly useful module for accomplishing many of the day-to-day tasks
performed by GIS analysts.

Managing Map Documents and Layers

48

In this chapter, you will learn how to use the ArcPy mapping module to manage map
documents and layer files. You will learn how to add and remove geographic layers and tables
from map document files, insert layers into data frames, and move layers around within the
map document. Finally, you will learn how to update layer properties and symbology.

Referencing the current map document
When running a geoprocessing script from the ArcGIS Python window or a custom script tool,
you will often need to get a reference to the map document currently loaded in ArcMap. This
is typically the first step in your script before you perform geoprocessing operations against
layers and tables in a map document. In this recipe, you will learn how to reference the
current map document from your Python geoprocessing script.

Getting ready
Before you can actually perform any operations on a map document file, you need to get a
reference to it in your Python script. This is done by calling the MapDocument() method
on the arcpy.mapping module. You can reference either the currently active document
or a document at a specific location on disk. To reference the currently active document,
you simply supply the keyword CURRENT as a parameter to the MapDocument() function.
This gets the currently active document in ArcMap. The following code example shows how a
reference to the currently active document is obtained:

mxd = mapping.MapDocument("CURRENT")

You can only use the CURRENT keyword when running a script from
the ArcGIS Python window or a custom script tool. If you attempt to use
this keyword when running a script from IDLE or any other development
environment, it won't have access to the map document file currently
loaded in ArcGIS. I should also point out that the CURRENT keyword is
not case sensitive. You could just as easily use current.

To reference a map document on a local or remote drive, simply supply the path to the map
document as well as the map document name as a parameter to MapDocument(). For
example, you would reference the crime.mxd file in the c:\data folder with the following
reference: arcpy.mapping.MapDocument("C:/data/crime.mxd").

Chapter 3

49

How to do it…
Follow these steps to learn how to access the currently active map document in ArcMap:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

3. Import the arcpy.mapping module by typing the following into the Python window:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch3.mxd) and assign the
reference to a variable by typing the following into the Python Window below
the first line of code that you added in the last step:
mxd = mapping.MapDocument("CURRENT")

5. Get the title of the map document and print it out to the shell window. When
the script executes, the title of the map document will be printed using the
Python print statement:
print mxd.title

6. Set a new title for map document:
mxd.title = "Copy of Crime Project"

7. Save a copy of the map document file with the saveACopy() method.
mxd.saveACopy("c:/ArcpyBook/Ch3/crime_copy.mxd")

8. Run the script .

9. In ArcMap open the crime_copy.mxd file that you just created and select File |
Map Document Properties to view the new title you gave to the map document.

How it works…
The MapDocument class has a constructor that creates an instance of this class. In
object-oriented programming, an instance is also known as an object. The constructor for
MapDocument can accept either the CURRENT keyword or a path to a map document file
on a local or remote drive. The constructor creates an object and assigns it to the variable
mxd. You can then access the properties and methods available on this object using dot
notation. In this particular case, we've printed out the title of the map document file using the
MapDocument.title property and we also used the MapDocument.saveACopy() method
to save a copy of the map document file.

http://resources.arcgis.com/en/help/main/10.1/index.html#/MapDocument/00s30000000n000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/MapDocument/00s30000000n000000/

Managing Map Documents and Layers

50

Referencing map documents on a disk
In addition to being able to reference the currently active map document file in ArcMap,
you can also access map document files stored on a local or remote drive using the
MapDocument() method. In this recipe, you'll learn how to access these map documents.

Getting ready
As I mentioned earlier, you can also reference a map document file that resides somewhere
on your computer or a shared server. This is done simply by providing a path to the file. This
is a more versatile way of obtaining a reference to a map document because it can be run
outside the ArcGIS Python window or a custom script tool.

How to do it…
Follow these steps to learn how to access a map document stored on a local or remote drive:

1. Open the IDLE development environment from Start | Programs | ArcGIS | Python
2.7 | IDLE.

2. Create a new IDLE script window by selecting New | New Window from the IDLE
shell window.

3. Import arcpy.mapping:
import arcpy.mapping as mapping

4. Reference the copy of the crime map document that you created in the last recipe:
mxd = mapping.MapDocument("c:/ArcpyBook/Ch3/crime_copy.mxd")

5. Print the title of the map document:
print mxd.title

6. Run the script to see the following output:

Copy of Crime Project

How it works…
The only difference between this recipe and the last is that we've provided a reference to
a map document file on a local or remote drive rather than using the CURRENT keyword.
This is the recommended way of referencing a map document file unless you know for sure
that your geoprocessing script will be run inside ArcGIS, either in the Python window or as a
custom script tool.

Chapter 3

51

Accessing a data frame
The ArcMap table of contents is composed of one or more data frames. Each data frame can
contain layers and tables. Data frames can be used to filter lists that are returned from the
various list functions such as ListLayers(). For example, a DataFrame object can be used
as an input parameter to restrict the layers returned by the ListLayers() function to only those
layers within a particular data frame. You can also use a DataFrame object to get or set the
current map extent, which can be useful when creating map books. In this recipe you will
learn how to access data frames from your Python scripts.

Getting ready
The ListDataFrames() function returns a list of DataFrame objects. Each data frame can
hold layers and tables and can be used to restrict the lists returned by the ListLayers()
and ListTablesViews() functions.

How to do it...
Follow the steps below to learn how to get a list of layers from a map document:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch3.mxd) and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Call the ListDataFrames() function and pass a reference to the map document
along with a wildcard used to find only the data frames that begin with the letter C:
frames = mapping.ListDataFrames(mxd,"C*")

6. Start a for loop and print out the name of each layer in the map document:
for df in frames:
 print df.name

7. Run the script to see the following output:

Crime

Crime_Inset

Managing Map Documents and Layers

52

How it works...
The ListDataFrames() function returns a list of all the data frames in the ArcMap table
of contents. Like any other Python list, you can iterate through the contents of the list using a
for loop. Inside the for loop, each data frame is dynamically assigned to the df variable and
the name of the data frame is printed to the screen.

Getting a list of layers in a map document
Frequently, one of the first steps in a geoprocessing script is to obtain a list of layers in the
map document. Once obtained, your script might then cycle through each of the layers and
perform some type of processing. The mapping module contains a ListLayers() function
that provides the capability of obtaining this list of layers. In this recipe, you will learn how to
get a list of layers contained within a map document.

Getting ready
The arcpy.mapping module contains various list functions to return lists of layers, data
frames, broken data sources, table views, and layout elements. These list functions are
normally the first step in a multi-step process, where the script needs to get one or more items
from a list for further processing. Each of these list functions returns a Python list, which as
you know from earlier in the book, is a highly functional data structure for storing information.

Normally, the list functions are used as part of a multi-step process, where creating a list is
only the first step. Subsequent processing in the script will iterate over one or more of the
items in this list. For example, you might obtain a list of layers in a map document and then
iterate through each layer looking for a specific layer name, which will then be subject to
further geoprocessing.

In this recipe, you will learn how to obtain a list of layers from a map document file.

How to do it…
Follow these steps to learn how to get a list of layers from a map document:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

Chapter 3

53

4. Reference the currently active document (Crime_Ch3.mxd) and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Call the ListLayers() function and pass a reference to the map document:
layers = mapping.ListLayers(mxd)

6. Start a for loop and print out the name of each layer in the map document:
for lyr in layers:
 print lyr.name

7. Run the script to see the following output:

Burglaries in 2009

Crime Density by School District

Bexar County Boundary

Test Performance by School District

Bexar County Boundary

Bexar County Boundary

Texas Counties

School_Districts

Crime Surface

Bexar County Boundary

How it works…
The ListLayers() function retrieves a list of layers in a map document, a specific data
frame, or a layer file. In this case, we passed a reference to the current map document to
the ListLayers() function, which will retrieve a list of all layers in the map document. The
results will be stored in a variable called layers, which is a Python list that can be iterated
with a for loop. This Python list contains one or more Layer objects.

There's more…
The ListLayers() function is only one of many list functions provided by the arcpy
mapping module. Each of these functions returns a Python list containing data of some
type. Some of the other list functions include ListTableViews(), which returns a list
of Table objects, ListDataFrames() which returns a list of DataFrame objects, and
ListBookmarks() which returns a list of bookmarks in a map document. There are
additional list functions, many of which we'll cover later in the book.

Managing Map Documents and Layers

54

Restricting the list of layers
In the previous recipe, you learned how to get a list of layers using the ListLayers()
function. There will be times when you will not want a list of all the layers in a map document,
but rather only a subset of the layers. The ListLayers() function allows you to restrict the
list of layers that is generated. In this recipe, you will learn how to restrict the layers returned
using a wildcard and a specific data frame from the ArcMap table of contents.

Getting ready
By default, if you only pass a reference to the map document or layer file, the ListLayers()
function will return a list of all the layers in these files. However, you can restrict the list of
layers returned by this function through the use of an optional wildcard parameter or by
passing in a reference to a specific data frame.

If you're working with a layer file (.lyr), you can't restrict layers with a
data frame. Layer files don't support data frames.

In this recipe, you will learn how to restrict the list of layers returned by ListLayers()
through the use of a wildcard and data frame.

How to do it…
Follow these steps to learn how to restrict a list of layers from a map document:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch3.mxd) and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Get a list of data frames in the map document and search for a specific data frame
name of Crime. Please note that text strings can be surrounded by either single or
double quotes:
for df in mapping.ListDataFrames(mxd):
 if (df.name == 'Crime'):

Chapter 3

55

6. Call the ListLayers() function and pass a reference to the map document, a
wildcard to restrict the search, and the data frame found in the last step to further
restrict the search. The ListLayers() function should be indented inside the if
statement you just created:
layers = mapping.ListLayers(mxd,'Burg',df)

7. Start a for loop and print out the name of each layer in the map document.
for layer in layers:
 print layer.name

8. The complete script should appear as follows:
import arcpy.mapping as mapping
mxd = mapping.MapDocument("CURRENT")
for df in mapping.ListDataFrames(mxd):
 if (df.name == 'Crime'):
 layers = mapping.ListLayers(mxd,"'Burg*',df)
 for layer in layers:
 print layer.name

9. Run the script to see the following output:

Burglaries in 2009

How it works…
As you learned in a previous recipe, the ListDataFrames() function is another list function
provided by arcpy mapping. This function returns a list of all the data frames in a map
document. We then loop through each of the data frames returned by this function, looking for
a data frame that has the name Crime. If we do find a data frame that has this name, we call
the ListLayers() function, passing in the optional wildcard value of Burg* as the second
parameter, and a reference to the Crime data frame. The wildcard value passed in as the
second parameter accepts any number of characters and an optional wildcard character (*).

In this particular recipe, we're searching for all the layers that begin with the characters Burg
and that have a data frame name of Crime. Any layers found matching these restrictions are
then printed. Keep in mind that all we're doing in this case is printing the layer names, but in
most cases, you would be performing additional geoprocessing through the use of tools
or other functions.

Managing Map Documents and Layers

56

Changing the map extent
There will be many occasions when you will need to change the map extent. This is frequently
the case when you are automating the map production process and need to create many
maps of different areas or features. There are a number of ways that the map extent can
be changed with arcpy. But, for this recipe, we'll concentrate on using a definition
expression to change the extent.

Getting ready
The DataFrame class has an extent property that you can use to set the geographic extent.
This is often used in conjunction with the Layer.definitionQuery property that is used to
define a definition query for a layer. In this recipe, you will learn how to use these objects and
properties to change the map extent.

How to do it...
Follow these steps to learn how to get a list of layers from a map document:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch3.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Create a for loop that will loop through all the data frames in the map document:
for df in mapping.ListDataFrames(mxd):

6. Find the data frame called Crime and a specific layer that we'll apply the definition
query against:
if (df.name == 'Crime'):
 layers = mapping.ListLayers(mxd,'Crime Density by
 School District',df)

7. Create a for loop that will loop through the layers. There will only be one, but we'll
create the loop anyway. In the for loop, create a definition query and set the new
extent of the data frame:

Chapter 3

57

for layer in layers:
 query = '"NAME" = \'Lackland ISD\''
 layer.definitionQuery = query
 df.extent = layer.getExtent()

8. The entire script should appear as follows:
import arcpy.mapping as mapping
mxd = mapping.MapDocument("CURRENT")
for df in mapping.ListDataFrames(mxd):
 if (df.name == 'Crime'):
 layers = mapping.ListLayers(mxd,'Crime Density by School
 District',df)
 for layer in layers:
 query = '"NAME" = \'Lackland ISD\''
 layer.definitionQuery = query
 df.extent = layer.getExtent()

9. Save and run the script. The extent of the data view should update to visualize only
the features matching the definition expression, as shown in the following screenshot:

Managing Map Documents and Layers

58

How it works...
This recipe used a definition query on a layer to update the map extent. Near the end of the
script, you created a new variable called query that holds the definition expression. The
definition expression is set up to find school districts with a name of Lackland ISD. This
query string is then applied to the definitionQuery property. Finally, the df.extent
property is set to the returned value of layer.getExtent().

Getting a list of tables
The arcpy.mapping module also has a ListTableViews() function that you can use to
obtain a list of standalone tables that are contained within a map document. In this recipe,
you will learn how to use the ListTableViews() function to create this list of tables.

Getting ready
In addition to providing the ability to generate a list of layers in a map document or data
frame, the arcpy mapping module also provides a ListTableViews() function that
generates a list of tables.

ListTableViews() only works with map document files and the data frames
contained within. Layer files do not have the capability of holding tables.

How to do it…
Follow these steps to learn how to get a list of standalone tables in a map document:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.
2. Click on the Python window button from the main ArcMap toolbar.
3. Import the arcpy.mapping module:

import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch3.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Generate a list of tables in the map document:
for tableView in mapping.ListTableViews(mxd):
 print tableView.name

6. Run the script to see the following output:.
Crime2009Table

Chapter 3

59

How it works…
The ListTableViews() function is very similar to the other list functions provided by
arcpy.mapping. As was the case with ListLayers(), the ListTableViews() function
accepts a reference to a map document (but not a layer file), along with an optional wildcard
and data frame parameters. The output is a list of tables that can be iterated with a for loop.

Adding layers to a map document
There will be many situations where you will need to add a layer to a map document. The
mapping module provides this functionality through the AddLayer() function. In this recipe,
you will learn how to add a layer to a map document using this function.

Getting ready
arcpy.mapping provides the ability to add layers or group layers into an existing map
document file. You can take advantage of the ArcMap "auto-arrange" functionality, which
automatically places a layer in the data frame for visibility. This is essentially the same
functionality provided by the Add Data button in ArcMap, which positions a layer in the
data frame based on geometry type and layer weight rules.

Layers can't be added to a layer file (.lyr).

When adding a layer to a map document, the layer must reference an existing layer found in
a layer file on disk, the same map document and data frame, the same map document with
 a different data frame, or a completely separate map document. A layer can be either a layer
in a map document or a layer in a .lyr file. To add a layer to a map document, you must first
create an instance of the Layer class and then call the AddLayer() function, passing in
the new layer along with the data frame where it should be placed and rules for how it
is to be positioned.

How to do it…
Follow these steps to learn how to add a layer to a map document:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

Managing Map Documents and Layers

60

4. Reference the currently active document (Crime_Ch3.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Get a reference to the Crime data frame, which is the first data frame in the list
returned by ListDataFrames(). The [0] specified at the end of the code gets
the first data frame returned from the ListDataFrames() method, which returns
a list of data frames. Lists are zero-based, so to retrieve the first data frame we
provide an index of 0.
df = mapping.ListDataFrames(mxd)[0]

6. Create a Layer object that references a .lyr file.
layer = mapping.Layer(r"C:\ArcpyBook\data\School_Districts.lyr")

7. Add the layer to the data frame:
mapping.AddLayer(df,layer,"AUTO_ARRANGE")

8. Run the script. The School_District.lyr file will be added to the data frame,
as shown in the following screenshot:

Chapter 3

61

How it works…
In the first two lines, we simply reference the arcpy.mapping module and get a reference
to the currently active map document. Next, we create a new variable called df, which holds
a reference to the Crime data frame. This is obtained through the ListDataFrames()
function that returns a list of data frame objects. We then use list access to return the first
item in the list, which is the Crime data frame. A new Layer instance, called layer is then
created from a layer file stored on disk. This layer file is called School_Districts.
lyr. Finally, we call the AddLayer() function, passing in the data frame where the layer will
reside along with a reference to the layer, and a parameter indicating that we would like to use
the auto-arrange feature. In addition to allowing ArcMap to automatically place the layer into
the data frame using auto-arrange, you can also specifically place the layer at either the top
or bottom of the data frame or a group layer using the BOTTOM or TOP position.

There's more…
In addition to providing the capability of adding a layer to a map document, arcpy.mapping
also provides an AddLayerToGroup() function, which can be used to add a layer to a group
layer. The layer can be added to the top or bottom of the group layer or you can use auto-
arrange for placement. You may also add layers to an empty group layer. However, just
as with regular layer objects, group layers cannot be added to a layer file.

Layers can also be removed from a data frame or group layer. RemoveLayer() is the
function used to remove a layer or group layer. In the event that two layers have the
same name, only the first is removed unless your script is set up to iterate.

Inserting layers into a map document
The AddLayer() function can be used to add a layer to a map document either through auto-
arrange or as the first or last layer in a data frame. However, it doesn't provide the control you
need for inserting a layer in a specific position within a data frame. For this added control,
you can use the InsertLayer() function. In this recipe, you will learn how to control the
placement of layers added to a data frame.

Getting ready
The AddLayer() function simply adds a layer into a data frame or a group layer, and places
the layer automatically using auto-arrange or specific placement at the top or bottom of the
data frame or group layer. The InsertLayer() method allows for more precise positioning
of a new layer into a data frame or a group layer. It uses a reference layer to specify a location
and the layer is added either before or after the reference layer, as specified in your code.
Since InsertLayer() requires the use of a reference layer, you can't use this method
on an empty data frame.

Managing Map Documents and Layers

62

This is illustrated in the following screenshot, where District_Crime_Join is the reference
layer and School_Districts is the layer to be added. The School_Districts layer can
be placed either before or after the reference layer using InsertLayer().

How to do it…
Follow these steps to learn how to use InsertLayer() to insert a layer into a data frame:

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch3.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Get a reference to the Crime data frame:
df = mapping.ListDataFrames(mxd, "Crime")[0]

6. Define the reference layer:
refLayer = mapping.ListLayers(mxd, "Burglaries*", df)[0]

7. Define the layer to be inserted relative to the reference layer:
insertLayer = mapping.Layer(r"C:\ArcpyBook\data\CityOfSanAntonio.
gdb\Crimes2009")

8. Insert the layer into the data frame:
mapping.InsertLayer(df,refLayer,insertLayer,"BEFORE")

9. Run the script. The Crimes2009 feature class will be added as a layer to the data
frame as seen in the following screenshot:

Chapter 3

63

How it works…
After obtaining references to the arcpy.mapping module, current map document file, and
the Crime data frame, our script then defines a reference layer. In this case, we use the
ListLayers() function with a wildcard of Burglaries*, and the Crime data frame to
restrict the list of layers returned to only one item. This item will be the Burglaries in 2009
layer. We use Python list access with a value of 0 to retrieve this layer from the list and
assign it to a Layer object. Next, we define the insert layer, which is a new Layer object
that references the Crimes2009 feature class from the CityOfSanAntonio geodatabase
database. Finally, we call the InsertLayer() function passing in the data frame, reference
layer, layer to be inserted, and keyword indicating that the layer to be inserted should be
placed before the reference layer. This is illustrated in the following screenshot:

Managing Map Documents and Layers

64

There's more…
You can also reposition a layer that is already in a data frame or a group layer. The
MoveLayer() function provides the ability to reposition the layer within a data frame or
a group layer. Movement of a layer must be within the same data frame. You can't move a
layer from one data frame to another. Just as with InsertLayer(), MoveLayer() uses a
reference layer to reposition the layer.

Updating layer symbology
There may be times when you will want to change the symbology of a layer in a map
document. This can be accomplished through the use of the UpdateLayer() function,
which can be used to change the symbology of a layer as well as various properties of a layer.
In this recipe, you will use the UpdateLayer() function to update the symbology of a layer.

Getting ready
The arcpy.mapping module also gives you the capability of updating layer symbology
from your scripts by using the UpdateLayer() function. For example, you might want
your script to update a layer's symbology from a graduated color to a graduated symbol,
as illustrated in the following screenshot. UpdateLayer() can also be used to update
various layer properties, but the default functionality is to update the symbology. Because
UpdateLayer() is a robust function capable of altering both symbology and properties,
you do need to understand the various parameters that can be supplied as an input.

How to do it…
Follow these steps to learn how to update the symbology of a layer using UpdateLayer():

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap.

2. Click on the Python window button from the main ArcMap toolbar.

Chapter 3

65

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch3.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Get a reference to the Crime data frame:
df = mapping.ListDataFrames(mxd, "Crime")[0]

6. Define the layer that will be updated:
updateLayer = mapping.ListLayers(mxd,"Crime Density by School
District",df)[0]

7. Define the layer that will be used to update the symbology:
sourceLayer = mapping.Layer(r"C:\ArcpyBook\data\
CrimeDensityGradSym.lyr")

8. Call the UpdateLayer() function to update the symbology:
mapping.UpdateLayer(df,updateLayer,sourceLayer,True)

9. Run the script. The Crime Density by School District layer will now be
symbolized with graduated symbols instead of graduated colors, as shown
in the following screenshot:

How it works…
In this recipe, we used the UpdateLayer() function to update the symbology of a layer. We
didn't update any properties, but we'll do so in the next recipe. The UpdateLayer() function
requires that you pass several parameters including a data frame, layer to be updated, and a
reference layer from which the symbology will be pulled and applied to update the layer. In our
code, the updateLayer variable holds a reference to the Crime Density by School District
layer, which will have its symbology updated. The source layer from which the symbology
will be pulled and applied to the update layer is a layer file (CrimeDensityGradSym.lyr)
containing graduated symbols.

Managing Map Documents and Layers

66

To update the symbology for a layer, you must first ensure that the update layer and the
source layer have the same geometry (point, line, and polygon). You also need to check
that the attribute definitions are the same, in some cases, depending upon the renderer.
For example, graduated color symbology and graduated symbols are based on a particular
attribute. In this case, both the layers have polygon geometry and have a CrimeDens field
containing crime density information.

Once we have references to both layers, we call the UpdateLayer() function, passing in
the data frame and layers along with a fourth parameter that indicates that we're updating
symbology only. We've supplied a True value as this fourth parameter, indicating that we
only want to update the symbology and not properties.

mapping.UpdateLayer(df,updateLayer,sourceLayer,True)

There's more...
UpdateLayer() also provides the ability to remove one layer and add another layer in
its place. The layers can be completely unrelated, so there is no need to ensure the same
geometry type and attribute field as you would when redefining the symbology of a layer.
This switching of layers essentially executes a call to RemoveLayer() and then a call to
AddLayer() as one operation. To take advantage of this functionality you must set the
symbology_only parameter to False.

Updating layer properties
In the previous recipe, you learned how to update the symbology of a layer. As I mentioned,
UpdateLayer() can also be used to update various properties of a layer, such as field
aliases, query definitions, and others. In this recipe, you will use UpdateLayer() to alter
various properties of a layer.

Getting ready
You can also use the UpdateLayer() function to update a limited number of layer
properties. Specific layer properties, such as field aliases, selection symbology, query
definitions, label fields, and others, can be updated using UpdateLayer(). A common
scenario is to have a layer in many map documents that needs to have a specific property
changed across all the instances of the layer in all map documents. To accomplish this, you
will have to use ArcMap to modify the layer with the appropriate properties and save it to
a layer file. This layer file then becomes the source layer, which will be used to update the
properties of another layer called update_layer. In this recipe, you'll use ArcMap to alter
the properties of a layer, save to a layer file (.lyr), and then use Python to write a script
that uses UpdateLayer() to apply the properties to another layer.

Chapter 3

67

How to do it…
Follow these steps to learn how to update layer properties with UpdateLayer():

1. Open c:\ArcpyBook\Ch3\Crime_Ch3.mxd with ArcMap. For this recipe,
you will be working with the Burglaries in 2009 feature class, as shown in the
following screenshot:

2. Double-click on the Burglaries in 2009 feature class in the Crime data frame to
display the Layer Properties window, as shown in the following screenshot. Each
of the tabs represents properties that can be set for the layer:

Managing Map Documents and Layers

68

3. Click on the General tab and change the value in the Layer Name textbox to the
name shown in the following screenshot:

4. Click on the Definition Query tab and define the query shown in the following
screenshot. You can use the Query Builder to define the query or simply type
in the query:

Chapter 3

69

5. Change the alias of the OFFDESC field to Offense Description as shown in the
preceding screenshot.

6. Click on the Fields tab in Layer Properties and make visible only those fields that are
selected with a checkmark in the following screenshot. This is done by unchecking
the fields you see in the following screenshot.

7. Click on OK to dismiss the Layer Properties dialog.

8. In the data frame, right-click on Burglaries – No Forced Entry and select Save as
Layer File.

9. Save the file as c:\ArcpyBook\data\BurglariesNoForcedEntry.lyr.

10. Right-click on the Burglaries – No Forced Entry layer and select Remove.

Managing Map Documents and Layers

70

11. Using the Add Data button in ArcMap, add the Crimes2009 feature class from the
CityOfSanAntonio geodatabase. The feature class will be added to the data
frame, as shown in the following screenshot:

12. Open the Python window in ArcMap.

13. Import the arcpy.mapping module:
import arcpy.mapping as mapping

14. Reference the currently active document (Crime_Ch3.mxd) and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

15. Get a reference to the Crime data frame:
df = mapping.ListDataFrames(mxd, "Crime")[0]

16. Define the layer that will be updated:
updateLayer = mapping.ListLayers(mxd,"Crimes2009",df)[0]

17. Define the layer that will be used to update the properties:
sourceLayer = mapping.Layer(r"C:\ArcpyBook\data\
BurglariesNoForcedEntry.lyr")

18. Call the UpdateLayer() function to update the symbology:
mapping.UpdateLayer(df,updateLayer,sourceLayer,False)

Chapter 3

71

19. Run the script.

20. The Crimes2009 layer will be updated with the properties associated with the
BurglariesNoForcedEntry.lyr file. This is illustrated in the following
screenshot. Turn on the layer to view the definition query that has been applied.
You can also open the Layer Properties dialog to view the property changes that
have been applied to the Crimes2009 feature class:

4
Finding and Fixing
Broken Data Links

In this chapter, we will cover the following recipes:

 f Finding broken data sources in your map document and layer files

 f Fixing broken data sources with MapDocument.findAndReplaceWorkspacePaths()

 f Fixing broken data sources with MapDocument.replaceWorkspaces()

 f Fixing individual Layer and Table objects with replaceDataSource()

 f Finding all broken data sources in all map documents in a folder

Introduction
It is not uncommon for your GIS data sources to move, migrate to a new data format or be
deleted. The result can be broken data sources in many map document or layer files. These
broken data sources can't be used until they have been fixed, which can be an overwhelming
process if the same changes need to be made across numerous map documents. You can
automate the process of finding and fixing these data sources using arcpy.mapping, without
ever having to open the affected map documents. Finding broken data sources is a simple
process requiring the use of the ListBrokenDataSources() function, which returns a
Python list of all broken data sources in a map document or layer file. Typically, this function
is used as the first step in a script that iterates through the list and fixes the data sources.
Fixing broken data sources can be performed on the individual data layer or across all the
layers in a common workspace.

Finding and Fixing Broken Data Links

74

Finding broken data sources in your map
document and layer files

Broken data sources are a very common problem with map document files. You can use
arcpy.mapping to identify data sources that have moved, been deleted, or changed format.

Getting ready
In ArcMap, a broken data connection is signified by a red exclamation point just before the
layer name. This is illustrated in the following screenshot. The ListBrokenDataSources()
function in arcpy.mapping returns a list of layer objects from a map document or layer file
that have a broken data connection:

How to do it…
Follow the steps below to learn how to find broken data sources in a map document file.

1. Open C:\ArcpyBook\Ch4\Crime_BrokenDataLinks.mxd in ArcMap.

You will see that each of the data sources have been broken. In this case, the data
has been moved to another folder, but you'd see the same indicator if the data had
been deleted or migrated to a different format. For example, it is not uncommon to
convert data from a personal geodatabase to a file geodatabase:

Chapter 4

75

2. Close ArcMap.

3. Open IDLE and create a new script window.

4. Import the arcpy.mapping module:
import arcpy.mapping as mapping

5. Reference the Crime_BrokenDataLinks.mxd map document file:
mxd = mapping.MapDocument(r"c:\ArcpyBook\Ch4\Crime_
BrokenDataLinks.mxd")

6. Get a list of the broken data sources:
lstBrokenDS = mapping.ListBrokenDataSources(mxd)

7. Iterate the list and print out the layer names:
for layer in lstBrokenDS:
 print layer.name

Finding and Fixing Broken Data Links

76

The ouptput will be printed as follows:

District_Crime_Join

Bexar_County_Boundary

District_Crime_Join

Bexar_County_Boundary

Bexar_County_Boundary

Texas_Counties_LowRes

School_Districts

Crime_surf

Bexar_County_Boundary

Crime2009Table

8. Save your script as FindFixBrokenData.py in the c:\ArcpyBook\Ch4 folder.

How it works…
The ListBrokenDataSources() function returns a Python list of layers that have a broken
data source. We then use a for loop to iterate this list and perform some sort of action for
each layer. In this case, we printed out the layer names simply to illustrate the data returned
by this function. In a later recipe, we'll build on this code by fixing these broken data sources.

There's more…
In addition to returning a list of broken data sources from a map document file, the
ListBrokenDataSources() function can also find broken data sources in a layer file
(.lyr). Simply pass in the path to the layer file to have the function examine the file for
broken data sources. Keep in mind that these functions are not needed with Map or Layer
packages, since the data is bundled with these files, unlike a layer file.

Fixing broken data sources
with MapDocument.
findAndReplaceWorkspacePaths()

The MapDocument.findAndReplaceWorkspacePaths() method is used to perform a
global find and replace of workspace paths for all the layers and tables in a map document.
You can also replace the paths to multiple workspace types at once.

Chapter 4

77

Getting ready
We need to cover some definitions before examining the methods used to fix datasets. You'll see
these terms used frequently when discussing the methods used to fix broken data sources, so
you'll need to understand what they mean in this context. A workspace is simply a container for
data. This can be a folder (in the case of shapefiles), personal geodatabase, file geodatabase, or
ArcSDE connection. A workspace path is the system path to the workspace. In the case of file
geodatabases, this would include the name of the geodatabase. A dataset is simply a feature
class or table within a workspace, and finally, a data source is the combination of the workspace
and dataset. Don't confuse a dataset with a feature dataset. The former is just a generic term
for data, while the latter is an object within a geodatabase that serves as a container for feature
classes and other datasets.

There are three acpy.mapping classes involved in fixing broken data sources.
They are MapDocument, Layer, and TableView. Each class contains methods
that can be used to fix data sources. In this recipe, we'll examine how you can use
the findAndReplaceWorkspacePaths() method in the MapDocument class to
perform a global find and replace operation on the layers and tables in a map document.

How to do it…
Follow these steps to learn how to fix layers and tables in a map document using
findAndReplaceWorkspacePaths():

1. Open c:\ArcpyBook\Ch4\Crime_BrokenDataLinks.mxd in ArcMap.

2. Right-click on any of the layers and select Properties.

3. Go to the Source tab and you will notice that the location for the layer refers to
C:\ArcpyBook\Ch4\Data\OldData\CityOfSanAntonio.gdb. This is a file
geodatabase but the location no longer exists; it has moved to the C:\ArcpyBook\
data folder.

4. Open IDLE and create a new script window.

5. Import the arcpy.mapping module:
import arcpy.mapping as mapping

6. Reference the Crime_BrokenDataLinks.mxd map document file:
mxd = mapping.MapDocument(r"c:\ArcpyBook\Ch4\Crime_
BrokenDataLinks.mxd")

7. Use MapDocument.findAndReplaceWorkspacePaths() to fix the source path
for each data source in the map document:
mxd.findAndReplaceWorkspacePaths(r"C:\ArcpyBook\Ch4\Data\OldData\
CityOfSanAntonio.gdb", r"C:\ArcpyBook\Data\CityOfSanAntonio.gdb")

Finding and Fixing Broken Data Links

78

8. Save the results to a new .mxd file:
mxd.saveACopy(r"C:\ArcpyBook\Ch4\Crime_DataLinksFixed.mxd")

9. Save the script as C:\ArcpyBook\Ch4\MapDocumentFindReplace.py.

10. Run the script.

11. In ArcMap, open the C:\ArcpyBook\Ch4\Crime_DataLinksFixed.mxd file. You
will notice that all the data sources get fixed, as shown in the following screenshot:

How it works…
The MapDocument.findAndReplaceWorkspacePaths() method is used to perform a
global find and replace of workspace paths for all layers and tables in a map document. You
can replace the paths to multiple workspace types at once.

Chapter 4

79

There's more…
The Layer and TableView objects also have a findAndReplaceWorkspacePaths()
method that performs the same type of operation. The difference is that this method, on the
Layer and TableView objects, is used to fix an individual broken data source rather than a
global find and replace of all broken data sources in a map document.

Fixing broken data sources with
MapDocument.replaceWorkspaces()

During the course of normal GIS operations, it is a fairly common practice to migrate data
from one file type to another. For example, many organizations migrate data from the older
personal geodatabase formats to the new file geodatabase types or perhaps even enterprise
ArcSDE geodatabases. You can automate the process of updating your datasets to a different
format with MapDocument.replaceWorkspaces().

Getting ready
MapDocument.replaceWorkspaces() is similar to MapDocument.
findAndReplaceWorkspacePaths(), but it also allows you to switch from one
workspace type to another. For example, you can switch from a file geodatabase to
a personal geodatabase. However, it only works on one workspace at a time. In this
recipe, we'll use MapDocument.replaceWorkspaces() to switch our data source
from a file geodatabase to a personal geodatabase.

How to do it…
Follow these steps to learn how to fix broken data sources using MapDocument.
replaceWorkspaces():

1. Open c:\ArcpyBook\Ch4\Crime_DataLinksFixed.mxd in ArcMap.

Finding and Fixing Broken Data Links

80

2. Notice that all the layers and tables are loaded from a file geodatabase called
CityOfSanAntonio.gdb, as shown in the following screenshot:

3. Open IDLE and create a new script window.

4. Import the arcpy.mapping module:
import arcpy.mapping as mapping

5. Reference the Crime_BrokenDataLinks.mxd map document file:
mxd = mapping.MapDocument(r"c:\ArcpyBook\Ch4\Crime_
BrokenDataLinks.mxd.mxd")

6. Call replaceWorkspaces(), passing a reference to the old geodatabase type as
well as the new geodatabase type:
mxd.replaceWorkspaces(r"c:\ArcpyBook\data\CityOfSanAntonio.gdb",
"FILEGDB_WORKSPACE",r"c:\ArcpyBook\new_data\CityOfSanAntonio_
Personal.mdb","ACCESS_WORKSPACE")

7. Save a copy of the map document file.
mxd.saveACopy(r"c:\ArcpyBook\Ch4\Crime_DataLinksUpdated.mxd")

8. Save the script as c:\ArcpyBook\Ch4\MapDocumentReplaceWorkspace.py.

9. Run the script.

Chapter 4

81

10. In ArcMap, open the c:\ArcpyBook\Ch4\Crime_DataLinksUpdated.mxd file.
As shown in the following screenshot, all data sources now reference a personal
geodatabase (note the .mdb extension):

How it works…
The MapDocument.replaceWorkspaces() method accepts several parameters including
old and new workspace paths along with the old and new workspace types. Paths to the
workspaces are self-explanatory, but some discussion of the workspace types is helpful.
The workspace types are passed into the method as string keywords. In this case, the old
workspace type was a file geodatabase so its keyword is FILEGDB_WORKSPACE. The new
workspace type is ACCESS_WORKSPACE, which indicates a personal geodatabase. Personal
geodatabases are stored in Microsoft Access files. There are a number of different workspace
types that can store GIS data. Make sure you provide the workspace type that is appropriate
for your dataset. The following is a list of valid workspace types (many people still work with
shapefiles, so in this case the workspace type would be SHAPEFILE_WORKSPACE):

 f ACCESS_WORKSPACE: A personal geodatabase or Access workspace

 f ARCINFO_WORKSPACE: An ArcInfo coverage workspace

Finding and Fixing Broken Data Links

82

 f CAD_WORKSPACE: A CAD file workspace
 f EXCEL_WORKSPACE: An Excel file workspace
 f FILEGDB_WORKSPACE: A file geodatabase workspace
 f NONE: Used to skip the parameter
 f OLEDB_WORKSPACE: An OLE database workspace
 f PCCOVERAGE_WORKSPACE: A PC ARC/INFO Coverage workspace
 f RASTER_WORKSPACE: A raster workspace
 f SDE_WORKSPACE: An SDE geodatabase workspace
 f SHAPEFILE_WORKSPACE: A shapefile workspace
 f TEXT_WORKSPACE: A text file workspace
 f TIN_WORKSPACE: A TIN workspace
 f VPF_WORKSPACE: A VPF workspace

Fixing individual Layer and Table objects
with replaceDataSource()

The previous recipes in this chapter have used various methods on the MapDocument object
to fix broken data links. The Layer and Table objects also have methods that can be used to
fix broken data links at the individual object level rather than working on all datasets in a map
document file.

Getting ready
Both the Layer and TableView classes have a replaceDataSource() method. This
method can be used to change the workspace path, workspace type, and/or dataset name
for a single layer or table. In this recipe, you'll write a script that changes the workspace path
and workspace type for a single layer. The replaceDataSource() method is available to
the Layer and TableView classes. In the case of a layer it can be in either a map document
or layer file. For a table, it can refer to the map document only, since Table objects can't be
contained inside a layer file.

How to do it…
Follow these steps to learn how to fix individual Layer and Table objects in a map document
using replaceDataSource():

1. Open c:\ArcpyBook\Ch4\Crime_DataLinksLayer.mxd in ArcMap. The
Crime data frame contains a layer called Burglary, which is a feature class in the
CityOfSanAntonio file geodatabase. You're going to replace this feature class
with a shapefile layer containing the same data:

Chapter 4

83

2. Open IDLE and create a new script window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the Crime_BrokenDataLinks.mxd map document file:
mxd = mapping.MapDocument(r"c:\ArcpyBook\Ch4\ Crime_
DataLinksUpdated.mxd")

5. Get a reference to the Crime data frame:
df = mapping.ListDataFrames(mxd,"Crime")[0]

6. Find the Burglary layer and store it in a variable:
lyr = mapping.ListLayers(mxd,"Burglary",df)[0]

7. Call the replaceDataSource() method on the Layer object and pass in the path
to the shapefile, a keyword indicating that this will be a shapefile workspace, and the
name of the shapefile:
lyr.replaceDataSource(r"c:\ArcpyBook\data","SHAPEFILE_
WORKSPACE","Burglaries_2009")

8. Save the results to a new map document file.
mxd.saveACopy(r"c:\ArcpyBook\Ch4\Crime_DataLinksNewLayer.mxd")

Finding and Fixing Broken Data Links

84

9. Save the script as c:\ArcpyBook\Ch4\LayerReplaceDataSource.py.

10. Run the script.

11. Open C:\ArcpyBook\Ch4\Crime_DataLinksNewLayer.mxd in ArcMap.
You should see that the Burglary layer now references a new workspace:

12. Right-click on the Burglary layer and select Properties.

13. Click on the Source tab and note the new workspace, workspace type, and
dataset name:

Chapter 4

85

How it works…
The replaceDataSource() method accepts two required parameters and two optional
parameters. The first two parameters define the workspace path and workspace type for
the layer that will be used as the replacement. The third parameter, dataset_name, is an
optional parameter that defines the name of the dataset that will be used as the replacement
layer. This name needs to be an exact match. For example, in this recipe, we passed in a
dataset_name attribute Burglaries_2009, which is the name of the shapefile that will now
be used as the replacement layer in the data frame. If a name is not provided, the method will
attempt to replace the dataset by finding a table with the same name as the current layer's
dataset property. The final optional parameter is validate. By default, this value is set to
true. When set to true, a workspace will only be updated if the workspace_path value is
a valid workspace. If it is not a valid workspace, then the workspace will not be replaced. If set
to false, the method will set the source to match workspace_path regardless of whether
it is a valid match or not. This can result in a broken data source, but can be useful if you are
creating or modifying a map document in preparation for data that does not yet exist.

There's more…
The Layer and TableView classes also contain a findAndReplaceWorkspacePath()
method. This method is very similar to the MapDocument.
findAndReplaceWorkspacePaths() method. The only difference is that it works against a
single Layer or TableView class instead of iterating the entire map document or layer file.

Finding all broken data sources in all map
documents in a folder

A common scenario in many organizations involves the movement of data from one
workspace to another or from one workspace type to another. When this happens, any
map documents or layers that reference these data sources become broken. Finding each
of these data sources can be a huge task if undertaken manually. Fortunately, you can create
a geoprocessing script that will find all broken data sources in a folder or list of folders.

Getting ready
In this recipe, you will learn how to recursively search directories for map document files,
find any broken data sources within those map documents, and write the names of the
broken data layers to a file.

Finding and Fixing Broken Data Links

86

How to do it...
Follow these steps to learn how to find all broken data sources in all map documents
in a folder:

1. Open IDLE and create a new script window.

2. Import the arcpy and os packages:
import arcpy.mapping as mapping, os

3. Define a path where you'd like to begin the search. In this case, we're going to begin
the search from the C: directory, which will then recursively search all directories
inside the C: drive. You may want to define a more specific path:
path = r"C:"

4. Open a file that you will use to which you will write the broken layer names:
f = open('BrokenDataList.txt','w')

5. Use the os.walk() method along with a for loop to walk the directory tree:
for root,dirs,files in os.walk(path):

6. Inside the for loop, create a second for loop that loops through all the files
returned. For each file, use the os.path.splitext() method to obtain the base
file name as well as the extension:
for filename in files:
 basename, extension = os.path.splitext(filename)

7. Test the file extension to see if it is a map document file. If so, get the full path to the
map document file, create a new map document object instance using the path, write
the map document name, loop through each of the broken data sources, and write to
a file:
if extension == ".mxd":
 fullPath = os.path.join(path,filename)
 mxd = mapping.MapDocument(fullPath)
 f.write("MXD: " + filename + "\n")
 brknList = mapping.ListBrokenDataSources(mxd)
 for brknItem in brknList:
 f.write("\t" + brknItem.name + "\n")

Chapter 4

87

8. Close the file:
f.close()

9. The entire script should appear as follows:
import arcpy.mapping as mapping, os
path = r"C:"
f = open('filename_here.txt','w')
for root,dirs,files in os.walk(path):
 for filename in files:
 basename, extension = os.path.splitext(filename)
 if extension == ".mxd":
 fullPath = os.path.join(path,filename)
 mxd = mapping.MapDocument(fullPath)
 f.write("MXD: " + filename + "\n")
 brknList = mapping.ListBrokenDataSources(mxd)
 for brknItem in brknList:
 f.write("\t" + brknItem.name + "\n")
f.close()

10. Run the script to generate the file.

11. Open the file to see the results. Your output will vary depending upon the path
you've defined. The following screenshot shows my output file:

Finding and Fixing Broken Data Links

88

How it works...
This script uses a combination of methods from the Python os package and arcpy.mapping
package. The os.walk() method walks a directory tree and returns the path, a list of
directories, and a list of files for each directory starting with a root directory that you have
defined as the c: directory. This root directory could have been any directory. The os.walk()
method returns a three item tuple consisting of the root directory, a list of directories, and
a list of files. We then loop through this list of files and use the os.path.splitext()
method to split each file into a base file name and file extension. The extension is tested to
see if it matches the string .mxd, which indicates a map document file. Files identified as
map documents have their filenames written to a text file, and a new MapDocument object
instance is created. The ListBrokenDataSources() method is then used with a reference
to the map document to generate a list of broken data sources within the file, and these
broken data sources are written to the file as well.

5
Automating Map

Production and Printing

In this chapter, we will cover the following recipes:

 f Creating a list of layout elements

 f Assigning a unique name to layout elements

 f Restricting the layout elements returned by ListLayoutElements()

 f Updating layout element properties

 f Getting a list of available printers

 f Printing maps with PrintMap()

 f Exporting a map to a PDF file

 f Exporting a map to an image file

 f Creating a map book with PDFDocumentCreate() and PDFDocumentOpen()

Introduction
The arcpy.mapping module, released with ArcGIS 10, provides a number of capabilities
related to the automation of map production. arcpy.mapping can be used to automate
map production, build map books, export to image or PDF files, and create and manage PDF
files. In this chapter, you'll learn how to use the arcpy.mapping module to automate various
geoprocessing tasks related to map production and printing.

Automating Map Production and Printing

90

Creating a list of layout elements
Often, the first step in a geoprocessing script that automates the production of maps is to
generate a list of the available layout elements. For example, you might need to update the
title of your map before printing or creating a PDF file. In this case, the title would likely be
stored in a text element. You can generate a list of text elements in your map layout view
and then change the title in it. The first step is to generate a list of text elements.

Getting ready...
In ArcMap, two views are available, namely, data view and layout view. Data view is used to
view geographic and tabular data, analyze data, symbolize layers, and manage data without
regard for any particular map page size or layout. Layout view shows the map as printed on
a page, and is used to create production-quality maps through the addition of map elements.
These elements include map frames, layers, legends, titles, north arrows, scale bars, and title
blocks. Each object in the layout is represented in arcpy.mapping as a layout element class.
Examples of many of these layout element classes are displayed in the following screenshot:

Chapter 5

91

Each element can be assigned a unique name that can then be used to access the element
programmatically. This unique name is defined in ArcMap. The arcpy.mapping module
provides a ListLayoutElements() function that returns a list of all these elements. In this
recipe, you will learn to use the ListLayoutElements() function to generate a list of map
layout elements.

How to do it…
Follow these steps to learn how to generate a list of layout elements:

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch5.mxd) and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Generate a list of layout elements and print them to the screen if the name property
is not empty:
for el in mapping.ListLayoutElements(mxd):
 if el.name != '':
 print el.name

6. The entire script should appear as follows:
import arcpy.mapping as mapping
mxd = mapping.MapDocument("CURRENT")
for el in mapping.ListLayoutElements(mxd):
 if el.name != '':
 print el.name

7. Run the script to see the following output:

Crime_Inset

Alternating Scale Bar

Legend Test Performance

Crime Legend

North Arrow

Inset_Map

Test_Performance

Crime

Automating Map Production and Printing

92

How it works…
ListLayoutElements() returns a list of layout elements in the form of various layout
classes. Each element can be one of the following object instances: GraphicElement,
LegendElement, PictureElement, TextElement, or MapSurroundElement. Each
element can have a unique name. You don't have to assign a name to each element, but it
is helpful to do so if you plan to access these elements programmatically in your scripts. In
this script, we first made sure that the element had a name assigned to it before printing the
name. This was done because ArcMap does not require that an element be assigned a name.

Assigning a unique name to layout elements
It's a good practice to assign a unique name to all your layout elements using ArcMap.
This is important in the event that your geoprocessing scripts need to access a particular
element to make changes. For example, you might need to update the icon that displays
your corporate logo. Rather than making this change manually in all your map document
files, you could write a geoprocessing script that updates all your map document files
programmatically with the new logo. However, in order for this to be possible, a unique
name will need to be assigned to your layout elements. This gives you the ability to
access the elements of your layout individually.

Getting ready
As I mentioned in the previous recipe, each layout element will be one of a number of
element types and each can be assigned a name. This element name can then be used
when you need to reference a particular element in your Python script. You can use ArcMap
to assign unique names to each layout element. In this recipe, you will use ArcMap to assign
names to the elements.

How to do it…
Follow these steps to learn how to assign unique names to each layout element using ArcMap:

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Switch to layout view and you should something similar to the following screenshot:

Chapter 5

93

3. Names are assigned differently depending upon the element type. Click on the
uppermost data frame, which should be Crime, to select it. The selection handles
should appear as follows:

Automating Map Production and Printing

94

4. Right-click on the upper data frame and select Properties to display the Data Frame
Properties window, as shown in the following screenshot. The Name property defines
the unique name for the element. In this case, the element name is Crime:

5. Close the Data Frame Properties window.

6. Select 2009 Crime Legend in the layout view and open the Properties window by
right-clicking on the legend and selecting Properties.

Chapter 5

95

7. Setting the element name for the legend is different from setting the element name
for a data frame. Click on the Size and Position tab.

8. The Element Name textbox is used in this case. Change the current value to 2009
Crime Legend, as shown in the following:

9. You can also define unique names for text elements. Select the title element (Crime
and Its Impact on School Test Performance), right-click on the element,
and select Properties.

Automating Map Production and Printing

96

10. Select the Size and Position tab and define a unique name for this element,
as shown in the following screenshot:

How it works…
Each element in the layout view can be assigned a name, which can then be used in your
geoprocessing script to retrieve the specific element. You should strive to define unique
names for each element. It isn't required that you define a unique name for each element,
nor is it required that you even define a name at all. However, it is a best practice to give each
element a name and ensure that each element name is unique if you intend to access these
elements from your Python scripts. In terms of naming practices for your elements, you should
strive to include only letters and underscores in the name.

There's more…
You can use element names in conjunction with the ListLayoutElements() function
to restrict the elements that are returned by the function through the use of a wildcard
parameter. In the next recipe, you'll learn how to restrict the list of layout elements
returned through the use of wildcards and element type.

Chapter 5

97

Restricting the layout elements returned by
ListLayoutElements()

Layouts can contain a large number of elements, many of which you won't need for a
particular geoprocessing script. The ListLayoutElements() function can restrict the
layout elements returned by passing in a parameter that defines the type of element that
should be returned along with an optional wildcard, which finds elements using a portion
of the name.

Getting ready
There are many different types of layout elements including graphics, legends, pictures, text,
and data frames. When you return a list of layout elements, you can restrict (filter) the types of
elements that are returned. In this recipe, you will write a script that filters the layout elements
returned by element type and wildcard.

How to do it…
Follow these steps to learn how to restrict the list of layers returned by the
ListLayoutElements() function through the use of optional parameters,
which define the type of element that should be returned along with a wildcard
that can also restrict the elements returned.

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch5.mxd) and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Use the ListLayoutElements() function with a restriction of only legend
elements as well as a wildcard that returns elements with a name containing
the text Crime anywhere in the name:
for el in mapping.ListLayoutElements(mxd,"LEGEND_
ELEMENT","*Crime*")
 print el.name

6. Run the script. In this case, only a single layout element will be returned:
2009 Crime Legend

Automating Map Production and Printing

98

How it works...
ListLayoutElements() is a versatile function, which in its most basic form is used to return a
list of all the layout elements on the page layout of a map document. However, there are two
optional parameters that you can supply to filter this list. The first type of filter is an element
type filter in which you specify that you only want to return one of the layout element types.
You can also apply a wildcard to filter the returned list. These two types of filters can be used
in combination. For example, in this recipe we are specifying that we only want to return
LEGEND_ELEMENT objects with the text "Crime" anywhere in the element name. This results
in a highly filtered list that only contains a single layout element.

ListLayoutElements() can be filtered by one of the following element
types: DATAFRAME_ELEMENT, GRAPHIC_ELEMENT, LEGEND_ELEMENT,
MAPSURROUND_ELEMENT, PICTURE_ELEMENT, TEXT_ELEMENT.

Updating layout element properties
Each layout element has a set of properties that you can update programmatically.
For example, LegendElement includes properties that allow you to change the position
of the legend on the page, update the legend title, and access the legend items.

Getting ready
There are many different types of layout elements including graphics, legends, text, maps,
and pictures. Each of these elements is represented by a class in the arcpy.mapping
package. These classes provide various properties that you can use to programmatically
alter the element.

The DataFrame class provides access to data frame properties in the map document file.
This object can work with both map units and page layout units, depending upon the property
being used. Page layout properties, such as positioning and sizing, can be applied to the
properties including elementPositionX, elementPositionY, elementWidth, and
elementHeight.

The GraphicElement object is a generic object for various graphics that can be added to
the page layout including tables, graphs, neatlines, markers, lines, and area shapes. You'll
want to make sure that you set the name property for each graphic element (and any other
element for that matter), if you intend to access it through a Python script.

LegendElement provides operations for positioning of the legend on the page layout,
modification of the legend title, and also provides access to the legend items and the
parent data frame. LegendElement can be associated with only a single data frame.

Chapter 5

99

MapSurroundElement can refer to north arrows, scale bars, and scale text, and like
LegendElement is associated with a single data frame. Properties on this object enable
repositioning on the page.

PictureElement represents a raster or image on the page layout. The most useful property
on this object allows for getting and setting the data sources, which can be extremely helpful
when you need to change a picture, such as a logo, in multiple map documents. For example,
you could write a script that iterates through all your map document files and replaces the
current logo with a new logo. You can also reposition or resize the object.

TextElement represents text on a page layout including inserted text, callouts, rectangle
text, and titles, but does not include legend titles or text that are part of a table or chart.
Properties enable modifying the text string, which can be extremely useful in situations where
you need to make the same text string change in multiple places in the page layout or over
multiple map documents, and of course repositioning of the object is also available.

Each element in the page layout is returned as an instance of one of the element objects. In
this recipe, we're going to use the title property on the Legend object to programmatically
change the title of the Crime legend and obtain a list of the layers that are part of the legend.

How to do it…
Follow these steps to learn how to update the properties of a layout element:

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch5.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Use the ListLayoutElements() method with a wildcard and restriction of only
legend elements to return only the Crime legend and store it in a variable:
elLeg = mapping.ListLayoutElements(mxd, "LEGEND_
ELEMENT","*Crime*")[0]

6. Use the title property to update the title of the legend:
elLeg.title = "Crimes by School District"

7. Get a list of the layers that are a part of the legend and print the names:
for item in elLeg.listLegendItemLayers():
 print item.name

Automating Map Production and Printing

100

8. The entire script should appear as follows:
import arcpy.mapping as mapping
mxd = mapping.MapDocument("CURRENT")
elLeg = mapping.ListLayoutElements(mxd, "LEGEND_
ELEMENT","*Crime*")[0]
elLeg.title = "Crimes by School District"
for item in elLeg.listLegendItemLayers():
 print item.name

9. Run the script. You should see the following layers printed:
Burglaries in 2009

Crime Density by School District

10. The change is displayed in the following screenshot:

How it works...
Each of the layout elements has a set of properties and methods. In this particular case, we've
used the title property on the Legend object. Other properties of this object allow you to set
the width and height, positioning, and others. Methods on the Legend object give you the ability
to adjust the column count, list the legend items, and remove and update items.

Chapter 5

101

Getting a list of available printers
Yet another list function provided by arcpy is ListPrinterNames(), which generates a
list of the available printers. As is the case with the other list functions that we've examined,
ListPrinterNames() is often called as a preliminary step in a multi-step script.

Getting ready
Before printing maps with the PrintMap() function, it is a common practice to call the
ListPrinterNames() function, which returns a list of the available printers for the local
computer. A particular printer can then be found by iterating through the list of printers and
using it as an input to the PrintMap() function.

How to do it…
Follow these steps to learn how to use the ListPrinterNames() function to return a list
of the available printers for your script:

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch5.mxd) and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

5. Call the ListPrinterNames() function and print each printer:
for printerName in mapping.ListPrinterNames():
 print printerName

6. Run the script. The output will vary depending upon the list of the available
printers for your computer. However, it should print something similar to the
following code snippet:

HP Photosmart D110 series

HP Deskjet 3050 J610 series (Network)

HP Deskjet 3050 J610 series (Copy 1)

HP Deskjet 3050 J610 series

Dell 968 AIO Printer

Automating Map Production and Printing

102

How it works...
The ListPrinterNames() function returns a Python list containing all the printers available
to use in your script. You can then use the PrintMap() function, which we'll examine in the
next recipe, to send a print job to a particular printer that is available to your computer.

Printing maps with PrintMap()
Sending your map layout to a printer is easy with the PrintMap() function. By default, the
print job will be sent to the default printer saved with the map document, but you can also
define a specific printer where the job should be sent.

Getting ready
arcpy.mapping provides a PrintMap() function for printing page layouts or data
frames from ArcMap. Before calling PrintMap(), it is a common practice to call the
ListPrinterNames() function. A particular printer can then be found by iterating
the list of printers and used as an input to the PrintMap() function.

PrintMap() can print either a specific data frame or the page layout of a map document.
By default, this function will use the printer saved with the map document or, if not
present in the map document, the default system printer. As I mentioned, you can also
use ListPrinterNames() to get a list of the available printers, and select one of these
printers as an input to PrintMap(). In this recipe, you will learn how to use the PrintMap()
function to print the layout.

How to do it…
Follow these steps to learn how to use the PrintMap() function to print the layout
view in ArcMap:

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch5.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

Chapter 5

103

5. Look for the Test_Performance data frame and print if it is found:

for df in mapping.ListDataFrames(mxd):
 if df.name == "Test_Performance":
 mapping.PrintMap(mxd,"",df)

How it works...
The PrintMap() function accepts one required parameter and a handful of optional
parameters. The required parameter is a reference to the map document. The first optional
parameter is the printer name. In this case, we haven't specified a particular printer to use.
Because we haven't provided a specific printer, it will use the printer saved with the map
document or the default system printer if a printer is not part of the map document. The
second optional parameter is the data frame that we'd like to print, which in this instance is
Test_Performance. Other optional parameters, not supplied in this case, are an output
print file and the image quality.

Exporting a map to a PDF file
Rather than sending your map or layout view to a printer, you may want to simply create PDF
files that can be shared. Arcpy mapping provides an ExportToPDF() function, which you can
use to do this.

Getting ready
PDF is a very popular interchange format designed to be viewable and printable from many
different platforms. The arcpy mapping ExportToPDF() function can be used to export data
frames or the page layout to PDF format. By default, the ExportToPDF() function exports
the page layout, but you can pass in an optional parameter that references a particular data
frame, which can be printed instead of the page layout. In this recipe, you will learn how to
export the page layout as well as a specific data frame to a PDF file.

How to do it…
Follow these steps to learn how to export a map to a PDF fil:

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

Automating Map Production and Printing

104

4. Reference the currently active document (Crime_Ch5.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument('CURRENT')

5. Export the page layout with the ExportToPDF() function:
mapping.ExportToPDF(mxd,r"c:\ArcpyBook\Ch5\Map_PageLayout.pdf").

6. Run the script.

7. Open the Map_PageLayout.pdf file that was created, and you should see
something similar to the following screenshot:

8. Now, we'll print a specific data frame from our map document file. Alter your script,
so that it appears as follows:
import arcpy.mapping as mapping
mxd = mapping.MapDocument('CURRENT')
for df in mapping.ListDataFrames(mxd):
 if df.name == "Crime":
 mapping.ExportToPDF(mxd,r"c:\ArcpyBook\Ch5\DataFrameCrime.
pdf",df)

9. Run the script and examine the output PDF.

Chapter 5

105

How it works…
The ExportToPDF() function requires two parameters, including a reference to the map
document and the file that serves as the output PDF file. The first script that we developed,
passed in a reference to the map document along with an output PDF file. Since we didn't
pass in an optional parameter specifying the data frame, the ExportToPDF() function will
export the page layout. There are also many optional parameters that can be passed into this
method, including a specific data frame and a number of parameters, mostly related to the
quality of the output content and file. Our second script passed in a specific data frame that
should be exported. You can reference the ArcGIS help pages for more information on each
of the optional parameters.

Exporting a map to an image file
You can also export the contents of the map or layout view to an image file using one of the
many functions provided by arcpy.mapping. Each image export function will differ in name
depending upon the type of image file you'd like to create. The parameters passed into the
function will also vary slightly.

Getting ready
In addition to providing the ability to export data frames and the page layout to a PDF format,
you can also use one of the many export functions provided by arcpy.mapping to export
an image file. Available formats include AI, BMP, EMF, EPS, GIF, JPEG, SVG, and TIFF. The
parameters provided for each function will vary depending upon the type of image. Some
examples of these function names include ExportToJPEG(), ExportToGIF(), and
ExportToBMP(). In this recipe, you'll learn how to export your maps to images.

How to do it…
Follow these steps to learn how to export your data or layout view to an image file:

1. Open C:\ArcpyBook\Ch5\Crime_Ch5.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy.mapping module:
import arcpy.mapping as mapping

4. Reference the currently active document (Crime_Ch5.mxd), and assign the
reference to a variable:
mxd = mapping.MapDocument("CURRENT")

Automating Map Production and Printing

106

5. Export the Crime data frame as a JPEG image:
for df in mapping.ListDataFrames(mxd):
 if df.name == "Crime":
 mapping.ExportToJPEG(mxd,r"c:\ArcpyBook\Ch5\DataFrameCrime.
jpg",df)

6. Run the script and examine the output file.

7. Now, we'll use an optional parameter that outputs a world file along with the
image. Alter your script, so that it appears as follows:
import arcpy.mapping as mapping
mxd = mapping.MapDocument("CURRENT")
for df in mapping.ListDataFrames(mxd):
 if df.name == "Crime":
 mapping.ExportToPDF(mxd,r"c:\ArcpyBook\Ch5\DataFrameCrime2.
jpg",df,world_file=True)

8. Run the script. A new file called DataFrameCrime.jpg will be created. Open
this file in a text editor, and you should see the following content:

470.520239851286190

0.000000000000000

0.000000000000000

-496.256971063348490

1972178.761771137800000

13815440.387677660000000

How it works…
Notice that the ExportToJPEG() function looks virtually the same as ExportToPDF().
Keep in mind though that the optional parameters will be different for all the export functions.
Each ExportTo<Type> function will vary depending upon the parameters that can be used
in the creation of the image file.

Creating a map book with
PDFDocumentCreate() and
PDFDocumentOpen()

One common scenario for many GIS professionals is the need to create a map book that can
then be shared with others. A map book is simply a collection of maps for a particular area
and usually contains an index map as well. Map books are often created with PDF files, as
they are a common interchange format.

Chapter 5

107

Getting ready
In addition to exporting your maps to PDF, you can also manipulate existing PDF documents
or create new PDF documents. You can merge pages, set document open behavior, add file
attachments, and create or change document security settings. The PDFDocumentOpen()
function is used to open an existing PDF file for manipulation. PDFDocumentCreate()
creates a new PDF document. These functions are often used in the creation of map
books, which is what we'll do in this recipe.

How to do it…
1. Open IDLE and create a new script window.

2. Import the arcpy.mapping and os modules:
import arcpy.mapping as mapping
import os

3. Set the path and filename for the map book. Remove the file if it already exists:
pdfPath = r"C:\ArcpyBook\Ch5\CrimeMapBook.pdf"
if os.path.exists(pdfPath):
 os.remove(pdfPath)

4. Create the PDF document:
pdfDoc = mapping.PDFDocumentCreate(pdfPath)

5. Append existing PDF pages to the document:
pdfDoc.appendPages(r"c:\ArcpyBook\Ch5\Map_PageLayout.pdf")
pdfDoc.appendPages(r"c:\ArcpyBook\Ch5\Map_DataFrameCrime.pdf")

6. Commit changes to the map book:
pdfDoc.saveAndClose()

7. The entire script should appear as follows:
import arcpy.mapping as mapping
import os
pdfPath = r"C:\ArcpyBook\Ch5\CrimeMapBook.pdf"
if os.path.exists(pdfPath):
 os.remove(pdfPath)
pdfDoc = mapping.PDFDocumentCreate(pdfPath)
pdfDoc.appendPages(r"c:\ArcpyBook\Ch5\Map_PageLayout.pdf")
pdfDoc.appendPages(r"c:\ArcpyBook\Ch5\Map_DataFrameCrime.pdf")
pdfDoc.saveAndClose()

Automating Map Production and Printing

108

8. Run the script.

9. Examine the new map book at c:\ArcpyBook\Ch5\CrimeMapBook.pdf.
The book should now contain two pages consisting of the PDF files that we
created in an earlier recipe.

How it works...
The PDFDocumentCreate() function is used to create a new PDF document by providing a
path and filename for the document. The PDF is not actually created on disk until you insert
or append pages and then call PDFDocument.saveAndClose(). The appendPages()
and insertPages() functions are used to insert and append pages.

PDFDocumentOpen() accepts a parameter that specifies the path to a PDF file and returns
an instance of the PDFDocument class. Once open, you can make modifications to PDF file
properties, add or insert files, and attach documents. Make sure you call PDFDocument.
saveAndClose() after all operations, to save the changes.

There's more…
A number of properties can be set on a PDF document through the PDFDocument object,
including getting the page count, attaching files, updating title, author, subject, keywords, open
behavior, and the layout. You can also update document security by calling PDFDocument.
updateDocSecurity() to set a password, encryption, and security restrictions.

6
Executing

Geoprocessing Tools
from Scripts

In this chapter, we will cover the following recipes:

 f Finding geoprocessing tools

 f Retrieving a toolbox alias

 f Executing geoprocessing tools from a script

 f Using the output of a tool as an input to another tool

 f Setting environment variables

Introduction
ArcGIS Desktop contains over 800 geoprocessing tools, which can be used in your Python
scripts. In this chapter, you will learn to use these tools in your scripts. Each tool has unique
characteristics. The syntax for executing each will differ depending upon the type of input
required to successfully execute the tool. We'll examine how you can determine the input
parameters for any tool using the ArcGIS Desktop help system. The execution of a tool
results in the creation of one or more output datasets along with a set of messages that
are generated while the tool is running. We'll examine how you can use these messages.
Finally, we'll look at how you can get and set environment variables for your script.

Executing Geoprocessing Tools from Scripts

110

Finding geoprocessing tools
Before using a tool in your geoprocessing script, you will need to make sure that you
have access to that tool, based on the current license level of ArcGIS Desktop that you
are running or that your end users will run. This information is contained within the
ArcGIS Desktop help system.

Getting ready
The availability of geoprocessing tools for your script is dependent upon the ArcGIS license
level you are using. At version 10.1 of ArcGIS Desktop, there are three license levels, namely
Basic, Standard, and Advanced. These were formerly known as ArcView, ArcEditor, and
ArcInfo, respectively. It is important for you to understand the license level required for the
tool that you want to use in your script. In addition to this, the use of extensions in ArcGIS
Desktop can result in the availability of additional tools for your script. There are two primary
ways to find tools in ArcGIS Desktop. The first is to use the search window and the second is
to simply browse the contents of ArcToolbox. In this recipe, you will learn to use the search
window to find available geoprocessing tools that can be used in your scripts.

How to do it…
1. Open C:\ArcpyBook\Ch6\Crime_Ch6.mxd in ArcMap.

2. From the Geoprocessing menu item select Search For Tools. This will display
the Search window, as shown in the following screenshot. By default, you will
be searching for Tools:

Chapter 6

111

3. Type the term Clip into the search text box. As you begin typing this word, the
Search textbox will automatically filter the results based upon the first few letters
you type. You'll notice that for the word Clip, there are three possible tools:
clip(analysis),clip(coverage), clip(data_management). There are
a number of cases where there are several geoprocessing tools with the same
name. To uniquely define a tool, the toolbox alias is attached to the tool name.
We'll examine toolbox aliases in greater detail in the next recipe.

Executing Geoprocessing Tools from Scripts

112

4. For now, click on the Search button to generate a list of matching tools. The search
should generate a list similar to what you see in the following screenshot. Tools are
indicated with a hammer icon in the search results. You'll also see a couple of other
icons in the search results. The scroll icon indicates a Python script, and an icon
containing multi-colored squares indicates a model:

5. Select the Clip (Analysis) tool. This will open the dialog box for the Clip (Analysis)
tool. This isn't all that useful to you as a script programmer. You will probably be
more interested in the ArcGIS Desktop help for a particular tool.

Chapter 6

113

6. Click on the Tool Help button at the bottom of the tool dialog box to display detailed
information about this particular tool:

7. Scroll down to the bottom of the help page for the Clip tool to examine the syntax for
this particular tool.

How it works…
The help system contains a summary, illustration, usage, syntax, code samples,
available environment variables, related topics, and licensing information for each tool.
As a geoprocessing script programmer, you will primarily be interested in the syntax, code
samples, and licensing information sections near the bottom.

You should always examine the licensing information section
at the bottom of the help documentation for each tool, to make
sure you have the appropriate license level to use the tool.

Executing Geoprocessing Tools from Scripts

114

The syntax section contains information about how this tool should be called from your Python
script, including the name of the tool and the required and optional input parameters. All the
parameters will be enclosed within parentheses. The required parameters for the Clip tool
are in_features, clip_features, and out_feature_class. When you call this tool
from your script, you will be required to provide these parameters to the tool for it to execute
correctly. The fourth parameter is an optional parameter called cluster_tolerance.
Parameters marked as optional in the syntax are surrounded by curly braces. The following
screenshot provides an example of an optional parameter surrounded by curly braces. This
doesn't mean that you enclose the parameter in curly braces when you call the tool. It is in
the help section simply to indicate that this parameter is optional when being called from
your geoprocessing script:

Retrieving a toolbox alias
All toolboxes have an alias which, when combined with the tool name, provides a unique
reference to any tool in ArcGIS Desktop. This alias is necessary because a number of tools
have the same name. When referencing a tool from your Python script, it is necessary to
reference both the tool name and tool alias.

Chapter 6

115

Getting ready
In the last recipe we looked at the Clip tool. There are actually three Clip tools which can be
found in the Analysis, Coverage, and Data Management toolboxes. Each Clip tool performs a
different function. For instance, the Clip tool in the Analysis toolbox clips a vector feature class
using an input feature, while the Clip tool in the Data Management toolbox is used to create a
spatial subset of a raster. Since it is possible to have multiple tools with the same name, we can
uniquely identify a particular tool by providing both the toolname and the toolbox alias where the
tool resides. In this recipe you will learn how to find the alias of a toolbox.

How to do it…
1. Open C:\ArcpyBook\Ch6\Crime_Ch6.mxd in ArcMap.

2. If necessary, open ArcToolbox.

3. Find the Analysis Tools toolbox, as shown in the following screenshot:

Executing Geoprocessing Tools from Scripts

116

4. Right-click on the Analysis Tools toolbox and select Properties. This will display the
Analysis Tools Properties dialog, as shown in the following screenshot. The Alias
textbox will contain the alias:

How it works…
You can follow this process to find the alias name of any toolbox. In a Python script, you can
execute a tool by referring to the tool with the syntax <toolname>_<toolbox alias>. For
example, if you were calling the Buffer tool, it would be buffer_analysis. Toolbox aliases are
invariably simple. They are typically one word and do not include dashes or special characters.
In the next recipe, we'll create a simple script that follows this format for executing a tool.

Chapter 6

117

Executing geoprocessing tools from a script
Once you have determined the toolbox alias and then verified the accessibility of the tool based
on your current license level, you are ready to add the execution of the tool to a script.

Getting ready
Now that you understand how to find the tools that are available and how to uniquely reference
them, the next step is to put this together and execute a tool from a geoprocessing script.
In this recipe, you can then execute the tool from your script.

How to do it…
1. Open C:\ArcpyBook\Ch6\Crime_Ch6.mxd in ArcMap.

2. Click on the Add Data button and add the EdgewoodSD.shp file to the table
of contents.

3. Turn off the Crime Density by School District and Burglaries in 2009 layers to get
a better view of the EdgewoodSD layer. There is only one polygon feature in this file.
It represents the Edgewood School District. Now we're going to write a script that
clips the Burglaries in 2009 features to this school district.

4. Open the Python window in ArcMap.

5. Import the arcpy module:
import arcpy

6. Create a variable that references the input feature class to be clipped:
in_features = "c:/ArcpyBook/data/CityOfSanAntonio.gdb/Burglary"

7. Create a variable that references the layer to be used for the clip:
clip_features = "c:/ArcpyBook/Ch6/EdgewoodSD.shp"

8. Create a variable that references the output feature class:
out_feature_class = "c:/ArcpyBook/Ch6/ClpBurglary.shp"

9. Execute the Clip tool from the Analysis Tools toolbox:
arcpy.Clip_analysis(in_features,clip_features,out_feature_class)

Executing Geoprocessing Tools from Scripts

118

10. Run the script. The output feature class containing only those burglary points within
the Edgewood school district should be added to the data frame, as shown in the
following screenshot:

How it works…
The primary line of code of interest in this recipe is the final line that executes the Clip tool.
Notice that we called this tool by specifying a syntax of Clip_analysis, which gives us a
reference to the Clip tool in the Analysis Tools toolbox, which has an alias of analysis.
We've also passed in three parameters that reference the input feature class, clip feature
class, and output feature class. I should point out that we hardcoded the paths to each of
the datasets. This is not a good programming practice, but in this particular instance I just
wanted to illustrate how you execute a tool. A future chapter will illustrate how you can
remove the hardcoding in your scripts and make them much more versatile.

Most tools that you use will require paths to data sources. This path must be the same as the
path reported on the ArcCatalog Location toolbar, as shown in the following screenshot:

Chapter 6

119

Tools use ArcCatalog to find geographic data using an ArcCatalog path. This path is a string
and is unique to each dataset. The path can include folder locations, database connections,
or a URL. So, it is important to check the path using ArcCatalog before attempting to write
Python scripts against the data. ArcSDE paths require special consideration. Many ArcSDE
users do not have standardized connection names, which can cause issues when running
models or scripts.

There's more...
Geoprocessing tools are organized in two ways. You can access tools as functions on arcpy
or as modules matching the toolbox alias name. In the first case, when tools are accessible
as functions from arcpy, they are called in the format that you followed in this recipe.
The tool name is followed by an underscore and then the toolbox alias. In the second
form, tools are called as functions of a module, which takes the name of the toolbox alias.
Here, analysis is the toolbox alias, so it becomes a module. Clip is a function of that
module and is called follows:

arcpy.analysis.Clip (in_features,clip_features,out_feature_class)

Which method you use is really a matter of preference. They both accomplish the same thing,
which is the execution of a geoprocessing tool.

Executing Geoprocessing Tools from Scripts

120

Using the output of a tool as an input to
another tool

There will be many occasions when you will need to use the output of one tool as an input to
another tool. This is called tool chaining. An example of tool chaining could involve buffering a
streams layer and then finding all residential properties that fall within the buffer. In this case,
the Buffer tool would output a new layer, which would then be used as an input to the Select
by Location tool or one of the other overlay tools. In this recipe, you will learn how to obtain
the output of a tool and use it as input to another tool.

Getting ready
The Buffer tool creates an output feature class from an input feature layer using a specified
distance. This output feature class can be stored in a variable, which can then be used as
an input to another tool, such as the Select Layer by Location tool. In this recipe, you
will learn how to use the output from the Buffer tool as an input to the Select Layer by
Location tool to find all schools that are within a half mile of a stream.

How to do it...
Follow these steps to learn how to access the currently active map document in ArcMap:

1. Open ArcMap with a new map document file (.mxd).

2. Click on the Add Data button and add the Streams and Schools shapefiles from
c:\ArcpyBook\data\TravisCounty.

3. Click on the Python window button.

4. Import the arcpy module:
import arcpy

5. Set the workspace:
arcpy.env.workspace = "c:/ArcpyBook/data/TravisCounty"

6. Start a try statement and add variables for the streams, buffered streams layer,
distance, and schools:
try:
 # Buffer areas of impact around major roads
 streams = "Streams.shp"
 streamsBuffer = "StreamsBuffer.shp"
 distance = "2640 Feet"
 schools2mile = "Schools.shp"

Chapter 6

121

7. Call the Buffer tool and pass in variables for the streams layer, the buffered stream
layer, and the distance along with several variables that control the look of the buffer:
arcpy.Buffer_analysis(streams, streamsBuffer,
distance,'FULL','ROUND','ALL')

8. Create a temporary layer for the schools using the Make Feature Layer tool:
arcpy.MakeFeatureLayer_management(schools2mile, 'Schools2Mile_lyr')

9. Select all schools within a half mile of a stream using the Select Layer by
Location tool:
arcpy.SelectLayerByLocation_management('Schools2Mile_lyr',
'intersect', streamsBuffer)

10. Add the except block to catch any errors:
except:
 print 'Error in script'

11. The entire script should appear as follows:
import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data/TravisCounty"
try:
 # Buffer areas of impact around major roads
 streams = "Streams.shp"
 streamsBuffer = "StreamsBuffer.shp"
 distance = "2640 Feet"
 schools2mile = "Schools.shp"

 arcpy.Buffer_analysis(streams, streamsBuffer,
distance,'FULL','ROUND','ALL')

 # Make a layer
 arcpy.MakeFeatureLayer_management(schools2mile, 'Schools2Mile_
lyr')
 arcpy.SelectLayerByLocation_management('Schools2Mile_lyr',
'intersect', streamsBuffer)
except:
 print 'Error in script'

Executing Geoprocessing Tools from Scripts

122

How it works...
The Buffer tool creates an output feature class, which we called StreamsBuffer.shp and
stored in a variable called streamsBuffer. This streamsBuffer variable is then used as
an input to the Select Layer by Location tool as the third parameter being passed in to
the function. Using the output of one tool simply requires that you create a variable to hold
the output data and then it can be re-used as needed in other tools.

Setting environment variables and
examining tool messages

Environment variables provide additional parameters that can be set, which serve as global
variables accessible at various levels including your scripts. Your scripts can get environment
variable values as well as set values. You need to have an understanding of the environment
variables that are available to your script as well as how they can be accessed. In addition to
this, tools generate messages during execution. These messages come in several varieties.

Getting ready
Environment settings are additional parameters available to your script during execution.
These are the values that you set once at the ArcGIS Desktop application level using a
separate dialog box accessed through the Geoprocessing - Environments menu item,
and are organized by category:

Chapter 6

123

These settings are very similar to environment variable settings that you can set at an
operating-system level, but they are specific to the ArcGIS geoprocessing framework. These
application-level environment settings are the highest level, and default settings for all the
tools are applied during the execution of any tool. In addition to application-level environment
settings, you can also apply environment settings at the tool level. Environment settings at the
tool level directly inherit the settings applied at the application level. However, these settings
can be overridden at the tool level. Tool-level settings are applicable only to the current tool
execution. Your Python scripts can get and set environment settings through the env class in
arcpy. These are read/write properties. Both application- and tool-level settings are passed
into the script and will apply to any tool that you run from within the script. You may also override
any environment settings from within your script and these will be applied during the execution
of the script. Please keep in mind that just as with tools, environment settings set at the script
level only apply to the current execution of a script. There are, however, two occasions when
environment settings are not passed to the script. These include scripts running outside an
ArcGIS application, such as when they are run from the operating system command prompt.
In addition, when a script calls another script, environment settings are not passed through.
In this recipe, you will learn to set environment settings from your Python script and view
various messages generated by the tool during execution.

How to do it…
Follow these steps to learn how to set environment settings and generate messages in
your script:

1. Create a new IDLE script and save it as c:\ArcpyBook\Ch6\
SetEnvVariables.py.

2. Import the arcpy module:
import arcpy

3. Set the workspace using an environment variable:
arcpy.env.workspace = "c:/ArcpyBook/Ch6"

4. Call the Buffer tool, passing in the input dataset of Streams.shp, an output
dataset of Streams_Buff.shp, and a distance of 200 feet.
arcpy.Buffer_analysis("Streams.shp","Streams_Buff,’200 Feet’")

5. Save the script.

Executing Geoprocessing Tools from Scripts

124

How it works…
Environment variables can be set at both the application level and the tool level.
Application-level environment settings are similar to global environment settings; in that
they affect all tools. On the other hand, environment settings defined at the tool level affect
only the current run of a tool. Both can be set using ArcGIS Desktop. Your scripts can also
set environment variables, which are applicable only during the execution of the script. They
are similar to environment variables set at the tool level. Probably, the most commonly set
environment variable used in scripts is the env.workspace variable, which defines the
current working directory for the script. Setting this variable at the top of your script can make
your code less wordy, since you won’t have to constantly refer to the full path to a dataset, but
rather simply the dataset name as defined in the current workspace.

7
Creating Custom

Geoprocessing Tools
In this chapter, we will cover the following recipe:

 f Creating a custom geoprocessing tool

Introduction
In addition to accessing the system tools provided by ArcGIS, you can also create your own
custom tools. These tools work in the same way that system tools do and can be used in
ModelBuilder, Python window, or in standalone Python scripts. Many organizations build
their own library of tools that perform geoprocessing operations specific to their data.

Creating a custom geoprocessing tool
In addition to being able to execute any of the available tools in your scripts, you can also
create your own custom tools, which can also be called from a script. Custom tools are
frequently created to handle geoprocessing tasks that are specific to an organization.
These tools can easily be shared as well.

Getting ready
In this recipe, you will learn to create custom geoprocessing script tools by attaching a Python
script to a custom toolbox in ArcToolbox. There are a number of advantages of creating a custom
script tool. When you take this approach, the script becomes a part of the geoprocessing
framework, which means that it can be run from a model, command line, or another script. In
addition to this, the script has access to ArcMap environment settings and help documentation.
Other advantages include a nice, easy-to-use user interface and error-prevention capabilities.
Error-prevention capabilities provided include a dialog box that informs the user of certain errors.

Creating Custom Geoprocessing Tools

126

These custom developed script tools must be added to a custom toolbox that you create
because the system toolboxes provided with ArcToolbox are read-only toolboxes and thus
can't accept new tools.

In this recipe, you are going to be provided with a pre-written Python script that reads wildfire
data from a comma-delimited text file, and writes this information to a point feature class
called FireIncidents. References to these datasets have been hardcoded, so you are
going to alter the script to accept dynamic variable input. You'll then attach the script to a
custom tool in ArcToolbox to give your end users a visual interface for using the script.

How to do it…
The custom Python geoprocessing scripts that you write can be added to ArcToolbox inside
custom toolboxes. You are not allowed to add your scripts to any of the system toolboxes,
such as Analysis or Data Management. However, by creating a new custom toolbox, you
can add these scripts.

1. Open ArcMap with an empty map document file and open the ArcToolbox window.

2. Right-click anywhere in the white space area of ArcToolbox and select Add Toolbox.
On the Add Toolbox dialog box, click on the New Toolbox button. This will create a
new toolbox with a default name of Toolbox.tbx; you will rename the toolbox in
the next step:

Chapter 7

127

3. Navigate to the c:\ArcpyBook\Ch7 folder and name the toolbox Wildfire Tools:

4. Open the toolbox by selecting WildfireTools.tbx and clicking on the Open button. The
toolbox should now be displayed in ArcToolbox as shown in the following screenshot:

Creating Custom Geoprocessing Tools

128

5. Each toolbox should be given a name and an alias. The alias will be used to uniquely
define your custom tool. Alias names should be kept short and should not include any
special characters. Right-click on the new toolbox and select Properties. Add an alias
of wildfire as shown in the following screenshot:

You can optionally create a new toolset inside this toolbox by
right-clicking on the toolbox and selecting New | Toolset. Toolsets
allow you to functionally group your scripts. In this example, it won't
be necessary to do this, but if you need to group your scripts in the
future, then this is how you can accomplish it.

6. In this next step, we will alter an existing Python script called InsertWildfires.
py to accept dynamic inputs that will be provided by the user of the tool through the
ArcToolbox interface. Open c:\ArcpyBook\Ch7\InsertWildfires.py in IDLE.

Notice that we have hardcoded the path to our workspace as well as the comma-
delimited text file containing the wildland fire incidents:

Chapter 7

129

arcpy.env.workspace = "C:/ArcpyBook/data/Wildfires/WildlandFires.
mdb"
 f = open("C:/ArcpyBook/data/Wildfires/
NorthAmericaWildfires_2007275.txt","r")

7. Delete the preceding two lines of code.

In addition, we have also hardcoded the output feature class name:
cur = arcpy.InsertCursor("FireIncidents")

This hardcoding limits the usefulness of our script. If the datasets move or are
deleted, the script will no longer run. In addition to this, the script lacks the flexibility
to specify different input and output datasets. In the next step, we will remove this
hardcoding and replace it with the ability to accept dynamic input.

8. We will use the GetParameterAsText() function found in arcpy to accept
dynamic input from the user. Add the following lines of code to your try block, so
that your code appears as follows:
try:
 # the output feature class name
 outputFC = arcpy.GetParameterAsText(0)

 # the template feature class that defines the attribute schema
 fClassTemplate = arcpy.GetParameterAsText(1)

 # open the file to read
 f = open(arcpy.GetParameterAsText(2),'r')

 arcpy.CreateFeatureclass_management(os.path.split(outputFC)[0],
os.path.split(outputFC[1]), "point", fClassTemplate)

Notice that we call the CreateFeatureClass tool, found in the Data Management
Tools toolbox, passing in the outputFC variable along with the template feature
class (fClassTemplate). This tool will create the empty feature class containing the
output feature class defined by the user.

9. You will also need to alter the line of code that creates an InsertCursor object.
Change the line as follows:
cur = arcpy.InsertCursor(outputFC)

10. The entire script should appear as follows:

import arcpy, os
try:
 outputFC = arcpy.GetParameterAsText(0)

Creating Custom Geoprocessing Tools

130

 fClassTemplate = arcpy.GetParameterAsText(1)
 f = open(arcpy.GetParameterAsText(2),'r')
 arcpy.CreateFeatureclass_management(os.path.split(outputFC)
[0], os.path.split(outputFC[1]), "point", fClassTemplate)
 lstFires = f.readlines()
 cur = arcpy.InsertCursor(outputFC)
 cntr = 1
 for fire in lstFires:
 if 'Latitude' in fire:
 continue
 vals = fire.split(",")
 latitude = float(vals[0])
 longitude = float(vals[1])
 confid = int(vals[2])
 pnt = arcpy.Point(longitude, latitude)
 feat = cur.newRow()
 feat.shape = pnt
 feat.setValue("CONFIDENCEVALUE", confid)
 cur.insertRow(feat)
 arcpy.AddMessage("Record number: " + str(cntr) + " written to
feature class")
 cntr = cntr + 1
except:
 print arcpy.GetMessages()
finally:
 del cur
 f.close()

In the next step, we will add the script that we just created to the Wildfire Tools toolbox
as a script tool.

11. In ArcToolbox, right-click on the Wildfire Tools custom toolbox that you created
earlier and select Add | Script. This will display the Add Script dialog, as shown
in the following screenshot. Give your script a name, label, and description. The
Name field can not contain any spaces or special characters. Label is the name
that shows up next to the script. For this example, give it a label of Load Wildfires
From Text. Finally, add some descriptive information that details the operations the
script will perform.

Chapter 7

131

12. See the following screenshot for Name, Label, and Description details:

13. Click on Next to display the next input dialog box for Add Script.

14. In this dialog box, you will specify the script that will be attached to the tool. Navigate
to c:\ArcpyBook\Ch7\InsertWildfires.py and add InsertWildfires.py
as the script.

Creating Custom Geoprocessing Tools

132

15. You will also want to make sure that the Run Python script in process checkbox is
selected, as shown in the following screenshot. Running a Python script "in process"
increases the performance of your script.

Running a script out of process requires ArcGIS to create a separate
process to execute the script. The time it takes to start this process
and execute the script leads to performance problems. Always run your
scripts in process. Running a script in process means that ArcGIS does
not have to spawn a second process to run the script. It runs in the
same process space as ArcGIS.

Chapter 7

133

16. Click on Next to display the parameter window, as shown in the following screenshot:

Each parameter that you enter in this dialog box corresponds to a single call to
GetParameterAsText(). Earlier, you altered your script to accept dynamic
parameters through the GetParameterAsText() method. The parameters
should be entered in this dialog box in the same order that your script expects to
receive them. For instance, you inserted the following line of code in your code:
outputFC = arcpy.GetParameterAsText(0)

Creating Custom Geoprocessing Tools

134

The first parameter that you add to the dialog box will need to correspond to this
line. In our code, this parameter represents the feature class that will be created
as a result of running this script. You add parameters by clicking on the first available
row under Display Name. You can enter in any text in this row. This text will be
displayed to the user. You will also need to select a corresponding datatype for the
parameter. In this case, Data Type should be set to Feature Class, since this is the
expected data that will be gathered from the user. Each parameter also has a number
of properties that can be set. Some of the more important properties include Type,
Direction, and Default.

17. Enter the information, as shown in the following screenshot, into your dialog box,
for the output feature class. Make sure that you set Direction to Output:

Chapter 7

135

18. Next, we need to add a parameter that defines the feature class that will be used
as the attribute template for our new feature class. Enter the following information
in your dialog box:

Creating Custom Geoprocessing Tools

136

19. Finally, we need to add a parameter that will be used to specify the comma-delimited
text file that will be used as an input in the creation of our new feature class. Enter
the following information into your dialog box:

Chapter 7

137

20. Click on Finish. The new script tool will be added to your Wildfire Tools toolbox,
as shown in the following screenshot:

21. Now, we'll test the tool to make sure it works. Double-click on the script tool to
display the dialog box, as shown in the following screenshot:

22. Define a new output feature class, which should be loaded inside the existing
WildlandFires.mdb personal geodatabase, as shown in the next screenshot.
Click on the open folder icon and navigate to the WildlandFires.mdb personal
geodatabase, which should be located in c:\ArcpyBook\data\Wildfires.

Creating Custom Geoprocessing Tools

138

23. You will also need to give your new feature class a name. In this case, we'll name the
feature class TodaysWildfires, but the name can be whatever you'd like. In the
following screenshot, you can see an example of how this should be done. Click on
the Save button:

24. For the attribute template, you will want to point to the FireIncidents feature
class that has already been created for you. This feature class contains a field
called CONFIDENCEVAL. This field will be created in our new feature class.
Click on the Browse button, navigate to c:\ArcpyBook\data\Wildfires\
WildlandFires.mdb, and you should see the FireIncidents feature
class. Select it and click on Add.

25. Finally, the last parameter needs to point to our comma-delimited text file
containing wildland fires. This file can be found at: c:\ArcpyBook\data\
Wildfires\NorthAmericaWildfires_2007275.txt. Click on the
Browse button and navigate to c:\ArcpyBook\data\Wildfires. Click on
NorthAmericaWildfires_2007275.txt and click on the Add button.

Chapter 7

139

Your tool should appear as follows:

26. Click on OK to execute the tool. Any messages will be written to the dialog box
as shown in the following screenshot. This is a standard dialog box for any
geoprocessing tool. If everything has been set up correctly, you should see the
following screenshot, which shows that a new feature class will be added to the
ArcMap display:

Creating Custom Geoprocessing Tools

140

If everything is set up correctly, you should see the following screenshot, which shows that a
new feature class will be added to the ArcMap display:

How it works…
Almost all script tools have parameters, and the values are set on the tool dialog box. When
the tool is executed, the parameter values are sent to your script. Your script reads these
values and then proceeds with its work. Python scripts can accept parameters as input.
Parameters, also known as arguments, allow your scripts to become dynamic. Up to this
point, all of our scripts have used hard coded values. By specifying input parameters for
a script, you are able to supply the name of the feature class at run time. This capability
makes your scripts more versatile.

The GetParameterAsText() method, which is used to capture parameter input,
is zero-based with the first parameter entered occupying index 0. Each successive
parameter is incremented by 1. The output feature class that will be created by reading
the comma-delimited text file is specified in the variable outputFC, which is retrieved by
GetParameterAsText(0). With GetParameterAsText(1), we capture a feature class
that will act as a template for the output feature class attribute schema. The attribute fields
in the template feature class are used to define the fields that will populate our output feature
class. Finally, GetParameterAsText(2) is used to create a variable called f, which will hold
the comma-delimited text file that will be read.

Chapter 7

141

There's more...
The arcpy.GetParameterAsText() method is not the only way to capture information
passed into your script. When you call a Python script from the command line, you can pass in
a set of arguments. When passing arguments to a script, each word must be separated by a
space. These words are stored in a zero-based list object called sys.argv. With sys.argv,
the first item in the list, referenced by index 0, stores the name of the script. Each successive
word is referenced by the next integer. Therefore, the first parameter will be stored in sys.
argv[1], the second in sys.argv[2], and so on. These arguments can then be accessed
from within your script.

It is recommended that you use the GetParameterAsText() function rather than sys.
argv, because GetParameterAsText() does not have a character limit whereas sys.
argv has a limit of 1,024 characters per parameter. In either case, once parameters have
been read into the script, your script can continue execution using the input values.

8
Querying and

Selecting Data

In this chapter, we will cover the following recipes:

 f Constructing proper attribute query syntax

 f Creating feature layers and table views

 f Selecting features and rows with the Select Layer by Attribute tool

 f Selecting features with the Select by Location tool

 f Combining spatial and attribute queries with the Select by Location tool

Introduction
Selecting features from a geographic layer or rows from a standalone attribute table is one of
the most common GIS operations. Queries are created to enable these selections, and can be
either attribute or spatial queries. Attribute queries use SQL statements to select features or
rows through the use of one or more fields or columns in a dataset. An example attribute query
would be "Select all land parcels with a property value greater than $500,000". Spatial queries
are used to select features based on some type of spatial relationship. An example might be
"Select all land parcels that intersect a 100 year floodplain" or perhaps "Select all streets that
are completely within Travis County, Texas". It is also possible to combine attribute and spatial
queries. An example might be "Select all land parcels that intersect the 100 year floodplain and
have a property value greater than $500,000".

Querying and Selecting Data

144

Constructing proper attribute query syntax
The construction of property attribute queries is critical to your success in creating
geoprocessing scripts that query data from feature classes and tables. All attribute
queries that you execute against feature classes and tables will need to have the correct
SQL syntax and also follow various rules depending upon the datatype that you execute
the queries against.

Getting ready
Creating the syntax for attribute queries is one of the most difficult and time-consuming tasks
that you'll need to master when creating Python scripts that incorporate the use of the Select by
Attributes tool. These queries are basically SQL statements along with a few idiosyncrasies that
you'll need to master. If you already have a good understanding of creating queries in ArcMap
or perhaps an experience with creating SQL statements in other programming languages, then
this will be a little easier for you. In addition to creating valid SQL statements, you also need
to be aware of some specific Python syntax requirements and some datatype differences that
will result in a slightly altered formatting of your statements for some datatypes. In this recipe,
you'll learn how to construct valid query syntax and understand the nuances of how different
datatypes alter the syntax as well as some Python-specific constructs.

How to do it…
Initially, we're going to take a look at how queries are constructed in ArcMap, so that you can
get a feel of how they are structured.

1. In ArcMap, open C:\ArcpyBook\Ch8\Crime_Ch8.mxd.

2. Right-click on the Burglaries in 2009 layer and select Open Attribute Table. You should
see an attribute table similar to the following screenshot. We're going to be querying the
SVCAREA field:

Chapter 8

145

3. With the attribute table open, select the Table Options button and then Select by
Attributes to display a dialog box that will allow you to construct an attribute query.

Notice the Select * FROM Burglary WHERE: statement on the query dialog box
(shown in the following screenshot). This is a basic SQL statement that will return
all the columns from the attribute table for Burglary that meet the condition that
we define through the query builder. The asterisk (*) simply indicates that all fields
will be returned:

Querying and Selecting Data

146

4. Make sure that Create a new selection is the selected item in the Method dropdown
list. This will create a new selection set.

5. Double-click on SVCAREA from the list of fields to add the field to the SQL statement
builder, as follows:

6. Click on the = button.

7. Click on the Get Unique Values button.

8. From the list of values generated, double-click on 'North' to complete the
SQL statement, as shown in the following screenshot:

Chapter 8

147

9. Click on the Apply button to execute the query. This should select 7520 records.

Many people mistakenly assume that you can simply take a query that has been
generated in this fashion and paste it into a Python script. That is not the case.
There are some important differences that we'll cover next.

10. Close the Select by Attributes window and the Burglaries in 2009 table.

11. Clear the selected feature set by clicking on Selection | Clear Selected Features.

12. Open the Python window and add the code to import arcpy.
import arcpy

13. Create a new variable to hold the query and add the exact same statement that you
created earlier:
qry = "SVCAREA" = 'North'

Querying and Selecting Data

148

14. Press Enter on your keyboard and you should see an error message similar to
the following:
Runtime error SyntaxError: can't assign to literal (<string>, line
1)

Python interprets SVCAREA and North as strings but the equal to sign between the two is
not part of the string used to set the qry variable. There are several things we need to do
to generate a syntactically correct statement for the Python interpreter.

One important thing has already been taken care of though. Each field name used in a query
needs to be surrounded by double quotes. In this case, SVCAREA is the only field used in the
query and it has already been enclosed by double quotes. This will always be the case when
you're working with shapefiles, file geodatabases, or ArcSDE geodatabases. Here is where it
gets a little confusing though. If you're working with data from a personal geodatabase, the
field names will need to be enclosed by square brackets instead of double quotes as shown
in the following code example. This can certainly leads to confusion for script developers.

qry = [SVCAREA] = 'North'

Now, we need to deal with the single quotes surrounding 'North'. When querying data from
fields that have a text datatype, the string being evaluated must be enclosed by quotes. If you
examine the original query, you'll notice that we have in fact already enclosed the word North
with quotes, so everything should be fine right? Unfortunately, it's not that simple with Python.
Quotes, along with a number of other characters, must be escaped with a forward slash followed
by the character being escaped. In this case, the escape sequence would be \'.

1. Alter your query syntax to incorporate the escape sequence:
qry = "SVCAREA" = \'North\'

2. Finally, the entire query statement should be enclosed with quotes:
qry = '"SVCAREA" = \'North\''

In addition to the = sign, which tests for equality, there are a number of additional operators
that you can use with strings and numeric data, including not equal (< >), greater than (>),
greater than or equal to (>=), less than (<), and less than or equal to (<=).

Wildcard characters including % and _ can also be used for shapefiles, file geodatabases, and
ArcSDE geodatabases. These include % for representing any number of characters. The LIKE
operator is often used with wildcard characters to perform partial string matching. For example,
the following query would find all records with a service area that begins with N and has any
number of characters after.

qry = '"SVCAREA" LIKE \'N%\''

Chapter 8

149

The underscore character (_) can be used to represent a single character. For personal
geodatabases the asterisk (*) is used to represent a wildcard character for any number
of characters, while (?) represents a single character.

You can also query for the absence of data, also known as NULL values. A NULL value is often
mistaken for a value of zero, but that is not the case. NULL values indicate the absence of
data, which is different from a value of zero. Null operators include IS NULL and IS NOT NULL.
The following code example will find all records where the SVCAREA field contains no data:

qry = '"SVCAREA" IS NULL'

The final topic that we'll cover in this section are operators used for combining expressions
where multiple query conditions need to be met. The AND operator requires that both query
conditions be met for the query result to be true, resulting in selected records. The OR operator
requires that at least one of the conditions be met.

How it works…
The creation of syntactically correct queries is one of the most challenging aspects of
programming ArcGIS with Python. However, once you understand some basic rules, it gets a
little easier. In this section, we'll summarize these rules. One of the more important things to
keep in mind is that field names must be enclosed with double quotes for all datasets, with
the exception of personal geodatabases, which require braces surrounding field names.

There is also an AddFieldDelimiters() function that you can use to add the correct
delimiter to a field based on the datasource supplied as a parameter to the function.
The syntax for this function is as follows:

AddFieldDelimiters(dataSource,field)

Additionally, most people, especially those new to programming with Python, struggle with
the issue of adding single quotes to string values being evaluated by the query. In Python,
quotes have to be escaped with a single forward slash followed by the quote. Using this
escape sequence will ensure that Python does in fact see that as a quote rather than the
end of the string.

Finally, take some time to familiarize yourself with the wildcard characters. For datasets
other than personal geodatabases, you'll use the (%) character for multiple characters and
an underscore (_) character for a single character. If you're using a personal geodatabase,
the (*) character is used to match multiple characters and the (?) character is used to
match a single character. Obviously, the syntax differences between personal geodatabases
and all other types of datasets can lead to some confusion.

Querying and Selecting Data

150

Creating feature layers and table views
Feature layers and table views serve as intermediate datasets held in memory for use
specifically with tools such as Select by Location and Select Attributes. Although these
temporary datasets can be saved, they are not needed in most cases.

Getting ready
Feature classes are physical representations of geographic data and are stored as files
(shapefiles, personal geodatabases, and file geodatabases) or within a geodatabase.
ESRI defines a feature class as "a collection of features that shares a common geometry
(point, line, or polygon), attribute table, and spatial reference."

Feature classes can contain default and user-defined fields. Default fields include the SHAPE
and OBJECTID fields. These fields are maintained and updated automatically by ArcGIS. The
SHAPE field holds the geometric representation of a geographic feature, while the OBJECTID
field holds a unique identifier for each feature. Additional default fields will also exist depending
on the type of feature class. A line feature class will have a SHAPE_LENGTH field. A polygon
feature class will have both, a SHAPE_LENGTH and a SHAPE_AREA field.

Optional fields are created by end users of ArcGIS and are not automatically updated by GIS.
These contain attribute information about the features. These fields can also be updated by
your scripts.

Tables are physically represented as standalone DBF tables or within a geodatabase.
Both, tables and feature classes, contain attribute information. However, a table contains
only attribute information. There isn't a SHAPE field associated with a table, and they may
or may not contain an OBJECTID field.

Standalone Python scripts that use the Select by Attributes or Select by Location tool
require that you create an intermediate dataset rather than using feature classes or tables.
These intermediate datasets are temporary in nature and are called Feature Layers or Table
Views. Unlike feature classes and tables, these temporary datasets do not represent actual
files on disk or within a geodatabase. Instead, they are "in memory" representations of feature
classes and tables. These datasets are active only while a Python script is running. They are
removed from memory after the tool has executed. However, if the script is run from within
ArcGIS as a script tool, then the temporary layer can be saved either by right-clicking on the
layer in the table of contents and selecting Save As Layer File or simply by saving the map
document file.

Chapter 8

151

Feature layers and table views must be created as a separate step in your Python scripts, before
you can call the Select by Attributes or Select by Location tools. The Make Feature Layer tool
generates the "in-memory" representation of a feature class, which can then be used to create
queries and selection sets, as well as to join tables. After this step has been completed, you can
use the Select by Attributes or Select by Location tool. Similarly, the Make Table View tool is
used to create an "in-memory" representation of a table. The function of this tool is the same as
Make Feature Layer. Both the Make Feature Layer and Make Table View tools require an input
dataset, an output layer name, and an optional query expression, which can be used to limit the
features or rows that are a part of the output layer. In addition, both tools can be found in the
Data Management Tools toolbox.

The syntax for using the Make Feature Layer tool is as follows:

arcpy.MakeFeatureLayer_management(<input feature layer>, <output layer
name>,{where clause})

The syntax for using the Make Table View tool is as follows:

Arcpy.MakeTableView_management(<input table>, <output table name>,
{where clause})

In this recipe, you will learn how to use the Make Feature Layer and Make Table View tools.
These tasks will be done inside ArcGIS, so that you can see the in-memory copy of the layer
that is created.

How to do it…
Follow these steps to learn how to use the Make Feature Layer and Make Table View tools:

1. Open c:\ArcpyBook\Ch8\Crime_Ch8.mxd in ArcMap.

2. Open the Python window.

3. Import the arcpy module:
import arcpy

4. Set the workspace:
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"

5. Start a try block:
try:

Querying and Selecting Data

152

6. Make an in-memory copy of the Burglary feature class using the Make Feature
Layer tool. Make sure you indent this line of code:
flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")

7. Add an except block and a line of code to print an error message in the event of
a problem:
except:
 print "An error occurred during creation"

8. The entire script should appear as follows:
import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"
try:
 flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")
except:
 print "An error occurred during creation"

9. Save the script to c:\ArcpyBook\Ch8\CreateFeatureLayer.py.

10. Run the script. The new Burglary_Layer file will be added to the ArcMap table
of contents:

Chapter 8

153

11. The Make Table View tool functionality is equivalent to the Make Feature Layer tool.
The difference is that it works against standalone tables instead of feature classes.

12. Remove the following line of code:
flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")

13. Add the following line of code in its place:
tView = arcpy.MakeTableView_management("Crime2009Table",
"Crime2009TView")

14. Run the script to see the table view added to the ArcMap table of contents.

How it works...
The Make Feature Layer and Make Table View tools create in-memory representations
of feature classes and tables respectively. Both the Select by Attributes and Select by
Location tools require that these temporary, in-memory structures be passed in as
parameters when called from a Python script. Both tools also require that you pass in
a name for the temporary structures.

There's more...
You can also apply a query to either the Make Feature Layer or Make Table View tools to
restrict the records returned in the feature layer or table view. This is done through the addition
of a where clause when calling either of the tools from your script. This query is much the same
as if you'd set a definition query on the layer through Layer Properties | Definition Query.

The syntax for adding a query is as follows:

MakeFeatureLayer(in_features, out_layer, where_clause)
MakeTableView(in_table, out_view, where_clause)

Querying and Selecting Data

154

Selecting features and rows with the Select
Layer by Attribute tool

Attribute queries can be executed against a feature class or a table through the use of the
Select Layer by Attribute tool. A where clause can be included to filter the selected records
and various selection types can be included.

Getting ready
The Select Layer by Attribute tool shown in the following screenshot is used to select records
from a feature class or table based on a query that you define. We covered the somewhat
complex topic of queries in an earlier recipe in this chapter, so hopefully you now understand
the basic concepts of creating a query. You have also learned how to create a temporary,
in-memory representation of a feature class or table, which is a pre-requisite to using either
the Select by Attributes or Select by Location tool.

The Select by Attributes tool uses a query along with either a feature layer or table view,
and a selection method to select records. By default, the selection method will be a new
selection set. Other selection methods include "add to selection", "remove from selection",
"subset selection", "switch selection", and "clear selection". Each of the selection methods
is summarized as follows:

 f NEW_SELECTION: It is the default selection method and creates a new selection set
 f ADD_TO_SELECTION: It adds a selection set to the currently selected records,

based on a query

Chapter 8

155

 f REMOVE_FROM_SELECTION: It removes records from a selection set based
on a query

 f SUBSET_SELECTION: It combines selected records that are common to the
existing selection set

 f SWITCH_SELECTION: It selects records that are not selected currently and
unselects the existing selection set

 f CLEAR_SELECTION: It clears all records that are currently a part of the selected set

The syntax for calling the Select by Attributes tool is as follows:

arcpy.SelectLayerByAttribute_management(<input feature layer or
table view>, {selection method}, {where clause})

In this recipe, you'll learn how to use the Select by Attributes tool to select features from a
feature class. You'll use the skills you learned in previous recipes to build a query, create a
feature layer, and finally call the Select by Attributes tool.

How to do it…
Follow these steps to learn how to select records from a table or feature class using the
Select Layer by Attributes tool:

1. Open IDLE and create a new script window.

2. Save the script to c:\ArcpyBook\Ch8\SelectLayerAttribute.py.

3. Import the arcpy module:
import arcpy

4. Set the workspace to the City of San Antonio geodatabase.
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"

5. Start a try block:
try:

6. Create the query that we used in the first recipe in this chapter. This will serve as a
where clause that will select all the records with a service area of North. This line
of code and the next four should be indented:
qry = '"SVCAREA" = \'North\''

7. Make an in-memory copy of the Burglary feature class:
flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")

Querying and Selecting Data

156

8. Call the Select Layer by Attribute tool passing in a reference to the feature layer we
just created. Define this as a new selection set and pass in a reference to the query:
arcpy.SelectLayerByAttribute_management(flayer, "NEW_SELECTION",
qry)

9. Print the number of selected records in the layer using the Get Count tool:
cnt = arcpy.GetCount_management(flayer)
print "The number of selected records is: " + str(cnt)

10. Add an except block and a line of code to print an error message in the event of
a problem:
except:
 print "An error occurred during selection"

11. The entire script should appear as shown in the following code snippet.
Please remember to include indentation with the try and except blocks:
import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"
try:
 qry = '"SVCAREA" = \'North\''
 flayer = arcpy.MakeFeatureLayer_
management("Burglary","Burglary_Layer")
 arcpy.SelectLayerByAttribute_management(flayer, "NEW_SELECTION",
qry)
 cnt = arcpy.GetCount_management(flayer)
 print "The number of selected records is: " + str(cnt)
except:
 print "An error occurred during selection"

12. Save the script.

13. Run the script. If everything has been done correctly, you should see a message
indicating that 7520 records have been selected:
The total number of selected records is: 7520

How it works…
The Select by Attributes tool requires that either a feature layer or table view be passed in as
the first parameter. In this recipe, we passed in a feature layer that was created by the Make
Feature Layer tool in the line just above. We used Make Feature Layer to create a feature layer
from the Burglary feature class. This feature layer was assigned to the variable flayer,
which is then passed into the Select by Attribute tool as the first parameter. In this script, we
also passed in a parameter indicating that we'd like to create a new selection set along with the
final parameter, which is a where clause. The where clause is specified in the qry variable.
This variable holds a query that will select all the features with a service area of North.

Chapter 8

157

Selecting features with the Select by
Location tool

The Select Layer by Location tool, as shown in the next screenshot, can be used to select
features based on some type of spatial relationship. Since it deals with spatial relationships,
this tool only applies to feature classes and their corresponding in-memory feature layers.

Getting ready
There are many different types of spatial relationships that you can apply while selecting
features using the Select by Location tool, including intersect, contains, within, boundary
touches, is identical, and many others. If not specified, the default intersect spatial relationship
will be applied. The input feature layer is the only required parameter, but there are a number
of optional parameters including the spatial relationship, search distance, a feature layer, or
feature class to test against the input layer, and a selection type. In this recipe, you will learn
how to use the Select by Location tool in a Python script to select features based on a spatial
relationship. You'll use the tool to select burglaries that are within the boundaries of the
Edgewood school district.

Querying and Selecting Data

158

How to do it…
Follow these steps to learn how to perform a spatial query using the Select by Location tool:

1. Open IDLE and create a new script window.

2. Save the script to c:\ArcpyBook\Ch8\SelectByLocation.py.

3. Import the arcpy module:
import arcpy

4. Set the workspace to the City of San Antonio geodatabase:
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"

5. Start a try block:
try:

6. Make an in-memory copy of the Burglary feature class:
flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")

7. Call the Select Layer by Location tool passing in a reference to the feature layer we
just created. The spatial relationship test will be COMPLETELY_WITHIN, meaning
that we want to find all burglaries that are completely within the boundaries of the
comparison layer. Define EdgewoodSD.shp as the comparison layer:
arcpy.SelectLayerByLocation_management (flayer, "COMPLETELY_
WITHIN", "c:/ArcpyBook/Ch8/EdgewoodSD.shp")

8. Print the number of selected records in the layer using the Get Count tool:
cnt = arcpy.GetCount_management(flayer)
print "The number of selected records is: " + str(cnt)

9. Add an except block and a line of code to print an error message in the event of
a problem:
except:
 print "An error occurred during selection"

10. The entire script should appear as shown in the following code snippet. Please
remember to include indentation with the try and except blocks:
import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"
try:
 flayer = arcpy.MakeFeatureLayer_
management("Burglary","Burglary_Layer")

Chapter 8

159

 arcpy.SelectLayerByLocation_management (flayer, "COMPLETELY_
WITHIN", "c:/ArcpyBook/Ch8/EdgewoodSD.shp")
 cnt = arcpy.GetCount_management(flayer)
 print "The number of selected records is: " + str(cnt)
except:
 print "An error occurred during selection"

11. Save the script.

12. Run the script. If everything was done correctly, you should see a message indicating
that 1470 records have been selected:
The total number of selected records is: 1470

In this case, we did not define the optional search distance and selection type parameters.
By default, a new selection will be applied as the selection type. We didn't apply a distance
parameter in this case, but we'll do that now to illustrate how it works.

1. Update the line of code that calls the Select Layer by Location tool:
arcpy.SelectLayerByLocation_management (flayer, "WITHIN_A_
DISTANCE", "c:/ArcpyBook/Ch8/EdgewoodSD.shp","1 MILES")

2. Save the script.

3. Run the script. If everything was done correctly, you should see a message
indicating that 2976 records have been selected. This will select all burglaries
within the boundaries of the Edgewood school district along with any burglaries
within one mile of the boundary:
The total number of selected records is: 2976

The final thing you'll do in this section is use the Copy Features tool to write the temporary
layer to a new feature class.

1. Comment out the two lines of code that get a count of the number of features,
and print them to the screen:
cnt = arcpy.GetCount_management(flayer)
print "The number of selected records is: " + str(cnt)

2. Add a line of code that calls the Copy Features tool. This line should be placed just
below the line of code that calls the Select Layer by Location tool. The Copy Features
tool accepts a feature layer as the first input parameter and an output feature class,
which in this case will be a shapefile called EdgewoodBurglaries.shp:
arcpy.CopyFeatures_management(flayer, 'c:/ArcpyBook/Ch8/
EdgewoodBurglaries.shp')

Querying and Selecting Data

160

3. The entire script should now appear as shown in the following code snippet.
Please remember to include indentation with the try and except blocks:
import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"
try:
 flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")
 arcpy.SelectLayerByLocation_management (flayer, "WITHIN_A_
DISTANCE", "c:/ArcpyBook/Ch8/EdgewoodSD.shp","1 MILES")
 arcpy.CopyFeatures_management(flayer, 'c:/ArcpyBook/Ch8/
EdgewoodBurglaries.shp')
 #cnt = arcpy.GetCount_management(flayer)
 #print "The total number of selected records is: " + str(cnt)
except:
 print "An error occurred during selection"

4. Save the script.

5. Run the script.

6. Examine your c:\ArcpyBook\Ch8 folder to see the output shapefile:

Chapter 8

161

How it works…
The Select by Location tool requires that a feature layer be passed in as the first parameter.
In this recipe, we pass in a feature layer that was created by the Make Feature Layer tool in
the line just above. We used Make Feature Layer to create a feature layer from the Burglary
feature class. This feature layer was assigned to the variable flayer, which is then passed
into the Select by Location tool as the first parameter. In this script, we've also passed in a
parameter that indicates the spatial relationship that we'd like to apply. Finally, we've also
defined a source layer to use for the spatial relationship comparison. Other optional
parameters that can be applied include a search distance and a selection type.

Combining a spatial and attribute query with
the Select by Location tool

There may be times when you want to select features using a combined attribute and spatial
query. For example, you might want to select all burglaries within the Edgewood school district
that occurred on a Monday. This can be accomplished by running the Select by Location and
Select by Attributes tools sequentially and applying a SUBSET SELECTION selection type.

Getting ready
This recipe will require that you create a feature layer that will serve as a temporary layer,
which will be used with the Select by Location and Select Layer by Attributes tools. The
Select by Location tool will find all burglaries that are within the Edgewood School District
and apply a selection set to those features. The Select Layer by Attributes tool uses the same
temporary feature layer and applies a where clause that finds all burglaries that occurred
on Monday. In addition, the tool also specifies that the selection should be a subset of the
currently selected features found by the Select by Location tool. Finally, you'll print the total
number of records that were selected by the combined spatial and attribute query.

How to do it...
1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch8\SpatialAttributeQuery.py.

3. Import the arcpy module:
import arcpy

Querying and Selecting Data

162

4. Set the workspace to the City of San Antonio geodatabase:
arcpy.env.workspace = "c:/ArcpyBook/data/CityofSanAntonio.gdb"

5. Start a try block. You'll have to indent the next lines up to the except block:
try:

6. Create a variable for the query and define the where clause:
qry = '"DOW" = \'Mon\''

7. Create the feature layer:
flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")

8. Execute the Select by Location tool to find all burglaries within the Edgewood
School District.
arcpy.SelectLayerByLocation_management (flayer, "COMPLETELY_
WITHIN", "c:/ArcpyBook/Ch8/EdgewoodSD.shp")

9. Execute the Select Layer by Attributes tool to find all burglaries that match the query
we defined previously in the qry variable. This should be defined as a subset query:
arcpy.SelectLayerByAttribute_management(flayer, "SUBSET_
SELECTION", qry)

10. Print the number of records that were selected:
cnt = arcpy.GetCount_management(flayer)

11. Add the except block:
except:
 print 'Error in selection'

The entire script should appear as follows:

import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"
try:
 qry = '"DOW" = \'Mon\''
 flayer = arcpy.MakeFeatureLayer_management("Burglary","Burglary_
Layer")
 arcpy.SelectLayerByLocation_management (flayer, "COMPLETELY_
WITHIN", "c:/ArcpyBook/Ch8/EdgewoodSD.shp")
 arcpy.SelectLayerByAttribute_management(flayer, "SUBSET_
SELECTION", qry)
 cnt = arcpy.GetCount_management(flayer)

Chapter 8

163

 print "The total number of selected records is: " + str(cnt)
except:
 print 'Error in selection'

12. Save and run the script.

If everything was done correctly, you should see a message indicating that 197 records
have been selected. This will select all the burglaries within the boundaries of the
Edgewood school district that occurred on a Monday.
The total number of selected records is: 197

How it works...
A new feature layer is created with the Make Feature Layer tool, and assigned to the variable
flayer. This temporary layer is then used as an input to the Select by Location tool along
with a spatial operator COMPLETELY_WITHIN, to find all the burglaries within the Edgewood
School District. This same feature layer, with a selection set already defined, is then used as
an input parameter to the Select Layer by Attributes tool. In addition to passing a reference
to the feature layer, the Select Layer by Attributes tool is also passed a parameter that defines
the selection type and a where clause. The selection type is set to SUBSET_SELECTION.
This selection type creates a new selection that is combined with the existing selection. Only
the records that are common to both remain selected. The where clause passed in as the
third parameter is an attribute query to find all the burglaries that occurred on Monday. The
query uses the DOW field and looks for a value of Mon. Finally, the Get Count tool is used
against the flayer variable to get a count of the number of selected records, and this is
printed on the screen.

9
Using the ArcPy Data

Access Module to
Select, Insert, and

Update Geographic
Data and Tables

In this chapter, we will cover the following recipes:

 f Overview of cursor objects

 f Retrieving features from a feature class with SearchCursor

 f Filtering records with a where clause

 f Improving cursor performance with Geometry tokens

 f Inserting rows with InsertCursor

 f Updating rows with UpdateCursor

 f Deleting rows with UpdateCursor

 f Inserting and updating rows inside an edit session

 f Reading geometry from a feature class

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

166

Introduction
We'll start this chapter with a basic question. What are cursors? Cursors are in-memory
objects containing one or more rows of data from a table or feature class. Each row
contains the attributes from each field in the data source, along with the geometry for
each feature. Cursors allow you to search, add, insert, update, and delete data from
tables and feature classes.

The ArcPy Data Access module or arcpy.da is new to ArcGIS 10.1 and contains methods
that allow you to iterate through each row in a cursor. Various types of cursors can be created.
For example, search cursors can be created to read values from rows. Update cursors can be
created to update values in rows or delete rows, and insert cursors can be created to insert
new rows.

There are a number of cursor improvements that have been introduced with the ArcPy Data
Access module. Prior to ArcGIS 10.1, cursor performance had been notoriously slow. Now,
cursors are significantly faster. Esri has estimated that search cursors are up to 30 times
faster while insert cursors are up to 12 times faster. In addition to these general performance
improvements, the Data Access module also provides a number of new options that allow
programmers to speed up processing. Rather than returning all the fields in a cursor, you
can now specify that a subset of fields be returned. This increases the performance as less
data needs to be returned. The same applies to geometry. Traditionally, when accessing the
geometry of a feature, the entire geometric definition would be returned. You can now use
geometry tokens to return a portion of the geometry rather than the full geometry for the
feature. You can also use lists and tuples rather than using rows. Also new are edit sessions
and the ability to work with versions, domains, and subtypes.

There are three cursor functions in arcpy.da. Each returns a cursor object having the same
name as the function. SearchCursor() creates a read-only SearchCursor object containing
rows from a table or feature class. InsertCursor() creates an InsertCursor object that
can be used to insert new records into a table or feature class. UpdateCursor() returns a
cursor object that can be used to edit or delete records from a table or feature class. Each of
these cursor objects has methods for accessing rows in the cursor. You can see the relationship
between the cursor functions, the objects they create, and how they are used as follows:

Function Object Created Usage
SearchCursor() SearchCursor Read-only view of data from a

table or feature class
InsertCursor() InsertCursor Adds rows to a table or feature

class
UpdateCursor() UpdateCursor Edit or delete rows in a table

or feature class

Chapter 9

167

The SearchCursor() function is used to return a SearchCursor object. This object can
only be used to iterate through a set of rows returned for read-only purposes. No insertions,
deletions, or updates can occur through this object. An optional where clause can be set to
limit the rows returned.

Once you've obtained a cursor instance, it is common to iterate through the records, particularly
with a SearchCursor or UpdateCursor. There are some peculiarities that you need to
understand about navigating the records in a cursor. Cursor navigation is forward moving only.
When a cursor is created, the pointer for the cursor sits just above the first row in the cursor.
The first call to next() will move the pointer to the first row. Rather than calling the next()
method, you can also use a for loop to process each of the records without the need to call
the next() method. After performing whatever processing you need to do with this row, a
subsequent call to next() will move the pointer to row 2. This process continues as long as
you need to access additional rows. However, after a row has been visited, you can't go back a
single record at a time. For instance, if the current row is row 3, you can't programmatically back
up to row 2. You can only go forward. To revisit rows 1 and 2, you would need to either call the
reset() method or recreate the cursor and move back through the object. As I mentioned,
cursors are often navigated through the use of for loops as well. In fact, this is a more common
way to iterate through a cursor and is a more efficient way to code your scripts. Cursor navigation
is illustrated in the following diagram:

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

168

The InsertCursor() function is used to create an InsertCursor object that allows you
to programmatically add new records to feature classes and tables. To insert rows, call the
insertRow() method on this object. You can also retrieve a read-only tuple containing the
field names in use by the cursor through the fields property. A lock is placed on the table
or feature class being accessed through the cursor. It's important to always design your script
in a way that releases the cursor when you are done.

The UpdateCursor() function can be used to create an UpdateCursor object that can
update and delete rows in a table or feature class. As is the case with an InsertCursor,
this function places a lock on the data while it's being edited or deleted. If the cursor is used
inside a Python with statement, the lock will automatically be freed after the data has been
processed. This hasn't always been the case. Prior to ArcGIS 10.1, cursors were required to be
manually released using the Python del statement. Once an instance of UpdateCursor has
been obtained, you can then call the updateCursor() method to update records in tables
or feature classes and the deleteRow() method to delete a row.

The subject of data locks requires a little more explanation. Insert and update cursors must
obtain a lock on the data source they reference. This means that no other application can
concurrently access this data source. Locks are a way of preventing multiple users from
changing data at the same time and thus corrupting the data. When the InsertCursor()
and UpdateCursor() methods are called in your code, Python attempts to acquire a lock
on the data. This lock must be specifically released after the cursor has finished processing,
so that other users running applications such as ArcMap or ArcCatalog can access the
data sources. Otherwise, no other application will be able to access the data. Prior to ArcGIS
10.1 and the with statement, cursors had to be specifically unlocked through Python's del
statement. Similarly, ArcMap and ArcCatalog also acquire data locks when updating or
deleting data. If a data source has been locked by either of these applications, your Python
code will not be able to access the data. Therefore, best practice is to close ArcMap and
ArcCatalog before running any standalone Python scripts that use insert or update cursors.

In this chapter, we're going to cover the use of cursors for accessing and editing tables
and feature classes. However, many of the cursor concepts that existed before ArcGIS
10.1 still apply.

Retrieving features from a feature class with
a SearchCursor

There are many occasions when you need to retrieve rows from a table or feature class for
read-only purposes. For example, you might want to generate a list of all land parcels in a
city with a value of greater than $100,000. In this case, you don't have any need to edit the
data. Your needs are met simply by generating a list of rows that meet some sort of criteria.

Chapter 9

169

Getting ready
The SearchCursor() function is used to return a SearchCursor object. This object can
only be used to iterate through a set of rows returned for read-only purposes. No insertions,
deletions, or updates can occur through this object. An optional where clause can be set to
limit the rows returned. In this recipe, you will learn how to create a basic SearchCursor
object on a feature class through the use of the SearchCursor() function.

The SearchCursor object contains a fields property along with next() and reset()
methods. The fields property is a read-only structure in the form of a Python tuple,
containing the fields requested from the feature class or table. You are going to hear the term
tuple a lot in conjunction with cursors. If you haven't covered this topic before, tuples are a
Python structure for storing a sequence of data similar to Python lists. But there are some
important differences between Python tuples and lists. Tuples are defined as a sequence of
values inside parentheses while lists are defined as a sequence of values inside brackets.
Unlike lists, tuples can't grow and shrink, which can be a very good thing in some cases when
you want data values to occupy a specific position each time. Such is the case with cursor
objects that use tuples to store data from fields in tables and feature classes.

How to do it…
Follow these steps to learn how to retrieve rows from a table or feature class inside a
SearchCursor object:

1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch9\SearchCursor.py.

3. Import the arcpy.da module:
import arcpy.da

4. Set the workspace:
arcpy.env.workspace = "c:/ArcpyBook/Ch9"

5. Use a Python with statement to create a cursor:
with arcpy.da.SearchCursor("Schools.shp",("Facility","Name"))
as cursor:

6. Loop through each row in the SearchCursor and print the name of the school.
Make sure you indent the for loop inside the with block:
for row in sorted(cursor):
 print("School name: " + row[1])

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

170

7. Save the script.

8. Run the script. You should see the following output:
School name: ALLAN

School name: ALLISON

School name: ANDREWS

School name: BARANOFF

School name: BARRINGTON

School name: BARTON CREEK

School name: BARTON HILLS

School name: BATY

School name: BECKER

School name: BEE CAVE

How it works…
The with statement, used with the SearchCursor() function, will create, open, and close
the cursor. So you no longer have to be concerned with explicitly releasing the lock on the
cursor as you did prior to ArcGIS 10.1. The first parameter passed into the SearchCursor()
function is a feature class, represented by the Schools.shp file. The second parameter is a
Python tuple containing a list of fields that we want returned in the cursor. For performance
reasons, it is a best practice to limit the fields returned in the cursor to only those that you
need to complete the task. Here, we've specified that only the Facility and Name fields
should be returned. The SearchCursor object is stored in a variable called cursor.

Inside the with block, we are using a Python for loop to loop through each school returned.
We're also using the Python sorted() function to sort the contents of the cursor. To access
the values from a field on the row, simply use the index number of the field you want to return.
In this case, we want to return the contents of the Name column, which will be index number
1, since it is the second item in the tuple of field names that are returned.

Filtering records with a where clause
By default, SearchCursor will contain all rows in a table or feature class. However, in many
cases, you will want to restrict the number of rows returned by some sort of criteria. Applying
a filter through the use of a where clause limits the records returned.

Chapter 9

171

Getting ready
By default, all rows from a table or feature class will be returned when you create a
SearchCursor object. However, in many cases, you will want to restrict the records
returned. You can do this by creating a query and passing it in as a where clause
parameter when calling the SearchCursor() function. In this recipe, you'll build
on the script you created in the previous recipe, by adding a where clause that
restricts the records returned.

How to do it…
Follow these steps to apply a filter to a SearchCursor object that restricts the rows returned
from a table or feature class:

1. Open IDLE and load the SearchCursor.py script that you created in the
previous recipe.

2. Update the SearchCursor() function by adding a where clause that queries
the facility field for records that have the text High School:
with arcpy.da.SearchCursor("Schools.shp",("Facility","Name"),
'"FACILITY" = \'HIGH SCHOOL\'') as cursor:

3. Save and run the script. The output will now be much smaller and restricted to only
those schools that are high schools:
High school name: AKINS

High school name: ALTERNATIVE LEARNING CENTER

High school name: ANDERSON

High school name: AUSTIN

High school name: BOWIE

High school name: CROCKETT

High school name: DEL VALLE

High school name: ELGIN

High school name: GARZA

High school name: HENDRICKSON

High school name: JOHN B CONNALLY

High school name: JOHNSTON

High school name: LAGO VISTA

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

172

How it works…
We covered the creation of queries in Chapter 8, Querying and Selecting Data, so hopefully
you now have a good grasp of how these are created along with all the rules you need to
follow when coding these structures. The where clause parameter accepts any valid SQL
query, and is used in this case to restrict the number of records that are returned.

Improving cursor performance with
geometry tokens

Geometry tokens were introduced in ArcGIS 10.1 as a performance improvement for cursors.
Rather than returning the entire geometry of a feature inside the cursor, only a portion of the
geometry is returned. Returning the entire geometry of a feature can result in decreased cursor
performance due to the amount of data that has to be returned. It's significantly faster to return
only the geometry that is needed.

Getting ready
A token is provided as one of the fields in the field list passed into the constructor
for a cursor and is in the format SHAPE@<Part of Feature to be Returned>.
The only exception to this format is the OID@ token, which returns the object ID of the
feature. The following code example retrieves the x and y coordinates of a feature:

with arcpy.da.SearchCursor(fc, ("SHAPE@XY","Facility","Name"))
as cursor:

The following table lists the available geometry tokens. Not all cursors support the full list of
tokens. Please check the ArcGIS help files for information on the tokens supported by each
cursor type. The SHAPE@ token returns the entire geometry of the feature. Use this carefully
though, because it is an expensive operation to return the entire geometry of a feature and
can dramatically affect performance. If you don't need the entire geometry, then do not
include this token!

Chapter 9

173

In this recipe, you will use a geometry token to increase the performance of a cursor.
You'll retrieve the x and y coordinates of each land parcel from a parcels feature class,
along with some attribute information about the parcel.

How to do it…
Follow these steps to add a geometry token to a cursor, which should improve the performance
of this object:

1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch9\GeometryToken.py.

3. Import the arcpy.da module:
import arcpy.da, time

4. Set the workspace:
arcpy.env.workspace = "c:/ArcpyBook/Ch9"

5. We're going to measure how long it takes to execute the code using a geometry
token. Add a start time for the script:
start = time.clock()

6. Use a Python with statement to create a cursor that includes the centroid of each
feature as well as the ownership information stored in the PY_FULL_OW field:
with arcpy.da.SearchCursor("coa_parcels.shp",("PY_FULL_OW","SHAPE@
XY")) as cursor:

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

174

7. Loop through each row in SearchCursor and print the name of the school.
Make sure you indent the for loop inside the with block:
for row in cursor:
 print("Parcel owner: {0} has a location of: {1}".format(row[0],
row[1]))

8. Measure the elapsed time:
elapsed = (time.clock() - start)

9. Print the execution time:
print "Execution time: " + str(elapsed)

10. Save the script.

11. Run the script. You should see something similar to the following output. Note the
execution time; your time will vary:
Parcel owner: CITY OF AUSTIN ATTN REAL ESTATE DIVISION has a
location of: (3110480.5197341456, 10070911.174956793)

Parcel owner: CITY OF AUSTIN ATTN REAL ESTATE DIVISION has a
location of: (3110670.413783513, 10070800.960865)

Parcel owner: CITY OF AUSTIN has a location of:
(3143925.0013213265, 10029388.97419636)

Parcel owner: CITY OF AUSTIN % DOROTHY NELL ANDERSON ATTN
BARRY LEE ANDERSON has a location of: (3134432.983822767,
10072192.047894118)

Execution time: 9.08046185109

Now, we're going to measure the execution time if the entire geometry is returned instead of
just the portion of the geometry that we need:

1. Save a new copy of the script as c:\ArcpyBook\Ch9\
GeometryTokenEntireGeometry.py.

2. Change the SearchCursor() function to return the entire geometry using SHAPE@
instead of SHAPE@XY:
with arcpy.da.SearchCursor("coa_parcels.shp",("PY_FULL_
OW","SHAPE@")) as cursor:

3. Save and run the script. You should see the following output. Your time will vary
from mine, but notice that the execution time is slower. In this case, it's only a little
over a second slower but we're only returning 2600 features. If the feature class
were significantly large, as many are, this would be amplified:
Parcel owner: CITY OF AUSTIN ATTN REAL ESTATE DIVISION has a
location of: <geoprocessing describe geometry object object at
0x06B9BE00>

Chapter 9

175

Parcel owner: CITY OF AUSTIN ATTN REAL ESTATE DIVISION has a
location of: <geoprocessing describe geometry object object at
0x2400A700>
Parcel owner: CITY OF AUSTIN has a location of: <geoprocessing
describe geometry object object at 0x06B9BE00>
Parcel owner: CITY OF AUSTIN % DOROTHY NELL ANDERSON ATTN BARRY
LEE ANDERSON has a location of: <geoprocessing describe geometry
object object at 0x2400A700>
Execution time: 10.1211390896

How it works…
A geometry token can be supplied as one of the field names supplied in the constructor for
the cursor. These tokens are used to increase the performance of a cursor by returning only
a portion of the geometry instead of the entire geometry. This can dramatically increase
the performance of a cursor, particularly when you are working with large polyline or polygon
datasets. If you only need specific properties of the geometry in your cursor, you should use
these tokens.

Inserting rows with InsertCursor
You can insert a row into a table or feature class using an InsertCursor object. If you want
to insert attribute values along with the new row, you'll need to supply the values in the order
found in the attribute table.

Getting ready
The InsertCursor() function is used to create an InsertCursor object that allows you to
programmatically add new records to feature classes and tables. The insertRow() method
on the InsertCursor object adds the row. A row, in the form of a list or tuple, is passed into
the insertRow() method. The values in the list must correspond to the field values defined
when the InsertCursor object was created. Just as with the other types of cursors, you can
also limit the field names returned using the second parameter of the method. This function
supports geometry tokens as well.

The following code example illustrates how you can use InsertCursor to insert new rows into
a feature class. Here, we are inserting two new wildfire points into the California feature
class. The row values to be inserted are defined in a list variable. Then, an InsertCursor
object is created, passing in the feature class and fields. Finally, the new rows are inserted into
the feature class using the insertRow() method:

rowValues = [{'Bastrop','N',3000,(-105.345,32.234)),('Ft Davis','N',
456, (-109.456,33.468))]
fc = "c:/data/wildfires.gdb/California"

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

176

fields["FIRE_NAME", "FIRE_CONTAINED", "ACRES", "SHAPE@XY"]
with arcpy.da.InsertCursor(fc, fields) as cursor:
 for row in rowValues:
 cursor.insertRow(row)

In this recipe, you will use InsertCursor to add wildfires retrieved from a text file
into a point feature class. When inserting rows into a feature class, you will need to know
how to add the geometric representation of a feature into the feature class. This can be
accomplished using InsertCursor along with two miscellaneous objects: Array and
Point. In this exercise, we will add point features in the form of wildfire incidents to an
empty point feature class. In addition, you will use Python file manipulation techniques
to read the coordinate data from a text file.

How to do it…
We will be importing North American wildland fire incident data from a single day in October,
2007. This data is contained in a comma-delimited text file containing one line for each fire
incident on that particular day. Each fire incident has a latitude/longitude coordinate pair
separated by commas along with a confidence value. This data was derived by automated
methods that use remote sensing data to derive the presence or absence of a wildfire.
Confidence values can range from 0 to 100. Higher numbers represent a greater confidence
that this is indeed a wildfire:

1. Open the file at c:\ArcpyBook\Ch9\Wildfire Data\
NorthAmericaWildfire_2007275.txt and examine the contents.

You will notice that this is a simple comma-delimited text file containing longitude
and latitude values for each fire along with a confidence value. We will use
Python to read the contents of this file line-by-line and insert new point features
into the FireIncidents feature class located in the c:\ArcpyBook\Ch9 \
WildfireData\WildlandFires.mdb personal geodatabase.

2. Close the file.

3. Open ArcCatalog.

4. Navigate to c:\ArcpyBook\Ch9\WildfireData.

You should see a personal geodatabase called WildlandFires. Open this
geodatabase and you will see a point feature class called FireIncidents.
Right now this is an empty feature class. We will add features by reading the
text file you examined earlier and inserting points.

5. Right-click on FireIncidents and select Properties.

6. Click on the Fields tab.

Chapter 9

177

The latitude/longitude values found in the file we examined earlier will be
imported into the SHAPE field and the confidence values will be written to the
CONFIDENCEVALUE field.

7. Open IDLE and create a new script.

8. Save the script to c:\ArcpyBook\Ch9\InsertWildfires.py.

9. Import the arcpy and os modules:
import arcpy,os

10. Set the workspace:
arcpy.env.workspace = "C:/ArcpyBook/Ch9/WildfireData/
WildlandFires.mdb"

11. Open the text file and read all the lines into a list:
f = open("C:/ArcpyBook/Ch9/WildfireData/
NorthAmericaWildfires_2007275.txt","r")
lstFires = f.readlines()

12. Start a try block:
try:

13. Create an InsertCursor object using a with block. Make sure you indent inside the
try statement. The cursor will be created on the FireIncidents feature class:
with da.InsertCursor("FireIncidents",("SHAPE@
XY","CONFIDENCEVALUE")) as cur:

14. Create a counter variable that will be used to print the progress of the script:
cntr = 1

15. Loop through the text file line by line using a for loop. Since the text file is comma-
delimited, we'll use the Python split() function to separate each value into a
list variable called vals. We'll then pull out the individual latitude, longitude, and
confidence value items and assign them to variables. Finally, we'll place these values
into a list variable called rowValue, which is then passed into the insertRow()
function for the InsertCursor object, and then we'll print a message:
for fire in lstFires:
 if 'Latitude' in fire:
 continue
 vals = fire.split(",")
 latitude = float(vals[0])
 longitude = float(vals[1])
 confid = int(vals[2])

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

178

 rowValue = [(latitude,longitude),confid]
 cur.insertRow(rowValue)
 print "Record number " + str(cntr) + " written to feature
class"
 #arcpy.AddMessage("Record number" + str(cntr) + " written
to feature class")
 cntr = cntr + 1

16. Add the except block to print any errors that may occur:
except Exception as e:
 print e.message

17. Add a finally block to close the text file:
finally:
 f.close()

18. The entire script should appear as follows:
import arcpy, os

arcpy.env.workspace = "C:/ArcpyBook/Ch9/WildfireData/
WildlandFires.mdb"
f = open("C:/ArcpyBook/Ch9/WildfireData/
NorthAmericaWildfires_2007275.txt","r")
lstFires = f.readlines()
try:
 with da.InsertCursor("FireIncidents",("SHAPE@
XY","CONFIDENCEVALUE")) as cur:
 cntr = 1
 for fire in lstFires:
 if 'Latitude' in fire:
 continue
 vals = fire.split(",")
 latitude = float(vals[0])
 longitude = float(vals[1])
 confid = int(vals[2])
 rowValue = [(latitude,longitude),confid]
 cur.insertRow(rowValue)
 print "Record number " + str(cntr) + " written to feature
class"
 #arcpy.AddMessage("Record number" + str(cntr) + " written
to feature class")

Chapter 9

179

 cntr = cntr + 1
except Exception as e:
 print e.message
finally:
 f.close()

19. Save and run the script. You should see messages being written to the output
window as the script runs:
Record number: 406 written to feature class

Record number: 407 written to feature class

Record number: 408 written to feature class

Record number: 409 written to feature class

Record number: 410 written to feature class

Record number: 411 written to feature class

20. Open ArcMap and add the FireIncidents feature class to the table of contents.
The points should be visible, as shown in the following screenshot:

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

180

How it works…
Some additional explanation may be needed here. The lstFires variable contains a list of
all the wildfires that were contained in the comma-delimited text file. The for statement will
loop through each of these records one by one, inserting each individual record into the fire
variable. We also include an if statement that is used to skip the first record in the file, which
serves as the header. As I explained earlier, we then pull out the individual latitude, longitude,
and confidence value items from the vals variable, which is just a Python list object and
assign them to variables called latitude, longitude, and confid. We then place these
values into a new list variable called rowValue in the order that we defined when we created
InsertCursor. That is, the latitude and longitude pair should be placed first, followed by the
confidence value. Finally, we call the insertRow() function on the InsertCursor object
assigned to the variable cur, passing in the new rowValue variable. We close by printing a
message that indicates the progress of the script and also creating our except and finally
blocks to handle errors and close the text file. Placing the file.close() method in the
finally block ensures that it will execute, and close the file, even if there is an error in the
previous try statement.

Updating rows with an UpdateCursor
If you need to edit or delete rows from a table or feature class, you can use UpdateCursor.
As is the case with InsertCursor, the contents of UpdateCursor can be limited through
the use of a where clause.

Getting ready
The UpdateCursor() function can be used to either update or delete rows in a table or
feature class. The returned cursor places a lock on the data, which will automatically be
released if used inside a Python with statement. An UpdateCursor object is returned
from a call to this method.

The UpdateCursor object places a lock on the data while it's being edited or deleted. If the
cursor is used inside a Python with statement, the lock will automatically be freed after the
data has been processed. This hasn't always been the case. Previous versions of cursors
were required to be manually released using the Python del statement. Once an instance
of UpdateCursor has been obtained, you can then call the updateCursor() method to
update records in tables or feature classes and the deleteRow() method to delete a row.

In this recipe, you're going to write a script that updates each feature in the FireIncidents
feature class by assigning a value of poor, fair, good, or excellent to a new field that
is more descriptive of the confidence values using an UpdateCursor. Prior to updating the
records, your script will add a new field to the FireIncidents feature class.

Chapter 9

181

How to do it…
Follow these steps to create an UpdateCursor object that will be used to edit rows in a
feature class:

1. Open IDLE and create a new script.

2. Save the script to c:\ArcpyBook\Ch9\UpdateWildfires.py.

3. Import the arcpy and os modules:
import arcpy,os

4. Set the workspace:
arcpy.env.workspace = "C:/ArcpyBook/Ch9/WildfireData/
WildlandFires.mdb"

5. Start a try block:
try:

6. Add a new field called CONFID_RATING to the FireIncidents feature class. Make
sure to indent inside the try statement:
arcpy.AddField_management("FireIncidents","CONFID_
RATING","TEXT","10")
print "CONFID_RATING field added to FireIncidents"

7. Create a new instance of UpdateCursor inside a with block:
with arcpy.da.UpdateCursor("FireIncidents",("CONFIDENCEVALUE","CON
FID_RATING")) as cursor:

8. Create a counter variable that will be used to print the progress of the script.
Make sure you indent this line of code and all the lines of code to follow inside
the with block:
cntr = 1

9. Loop through each of the rows in the FireIncidents fire class. Update the
CONFID_RATING field according to the following guidelines:

 � Confidence value 0 to 40 = POOR

 � Confidence value 41 to 60 = FAIR

 � Confidence value 61 to 85 = GOOD

 � Confidence value 86 to 100 = EXCELLENT

for row in cursor:
 # update the confid_rating field
 if row[0] <= 40:

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

182

 row[1] = 'POOR'
 cursor.updateRow(row)
 elif row[0] > 40 and row[0] <= 60:
 row[1] = 'FAIR'
 cursor.updateRow(row)
 elif row[0] > 60 and row[0] <= 85:
 row[1] = 'GOOD'
 cursor.updateRow(row)
 else:
 row[1] = 'EXCELLENT'
 cursor.updateRow(row)
print "Record number " + str(cntr) + " updated"
cntr = cntr + 1

10. Add the except block to print any errors that may occur:
except Exception as e:
 print e.message

11. The entire script should appear as follows:
import arcpy, os

arcpy.env.workspace = "C:/ArcpyBook/Ch9/WildfireData/
WildlandFires.mdb"
try:
 #create a new field to hold the values
 arcpy.AddField_management("FireIncidents","CONFID_
RATING","TEXT","10")
 print "CONFID_RATING field added to FireIncidents"
 with arcpy.da.UpdateCursor("FireIncidents",("CONFIDENCEVALUE","C
ONFID_RATING")) as cursor:
 cntr = 1
 for row in cursor:
 # update the confid_rating field
 if row[0] <= 40:
 row[1] = 'POOR'
 elif row[0] > 40 and row[0] <= 60:
 row[1] = 'FAIR'
 elif row[0] > 60 and row[0] <= 85:
 row[1] = 'GOOD'
 else:
 row[1] = 'EXCELLENT'

Chapter 9

183

 cursor.updateRow(row)
print "Record number " + str(cntr) + " updated"
 cntr = cntr + 1
except Exception as e:
 print e.message

12. Save and run the script. You should see messages being written to the output window
as the script runs:
Record number 406 updated

Record number 407 updated

Record number 408 updated

Record number 409 updated

Record number 410 updated

13. Open ArcMap and add the FireIncidents feature class. Open the attribute table
and you should see that a new CONFID_RATING field has been added and populated
by UpdateCursor:

When you insert, update, or delete data in cursors, the changes are
permanent and can't be undone if you're working outside an edit
session. However, with the new edit session functionality provided
by ArcGIS 10.1, you can now make these changes inside an edit
session to avoid these problems. We'll cover edit sessions soon.

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

184

How it works…
In this case, we've used UpdateCursor to update each of the features in a feature class.
We first used the Add Field tool to add a new field called CONFID_RATING, which will hold
new values that we assign based on values found in another field. The groups are poor, fair,
good, and excellent, and are based on numeric values found in the CONFIDENCEVALUE field.
We then created a new instance of UpdateCursor based on the FireIncidents feature
class, and returned the two fields mentioned previously. The script then loops through each
of the features and assigns a value of poor, fair, good, or excellent to the CONFID_RATING
field (row[1]), based on the numeric value found in CONFIDENCEVALUE. A Python if/elif/
else structure is used to control the flow of the script based on the numeric value. The value
for CONFID_RATING is then committed to the feature class by passing in the row variable into
the updateRow() method.

Deleting rows with an UpdateCursor
In addition to being used to edit rows in a table or feature class, an UpdateCursor can
also be used to delete rows. Please keep in mind that when rows are deleted outside an
edit session, the changes are permanent.

Getting ready
In addition to updating records, UpdateCursor can also delete records from a table or
feature class. The UpdateCursor object is created in the same way in either case, but
instead of calling updateRow(), you call deleteRow() to delete a record. You can also
apply a where clause to UpdateCursor, to limit the records returned. In this recipe, we'll
use an UpdateCursor object that has been filtered using a where clause to delete records
from our FireIncidents feature class.

How to do it…
Follow these steps to create an UpdateCursor object that will be used delete rows from
a feature class:

1. Open IDLE and create a new script.

2. Save the script to c:\ArcpyBook\Ch9\DeleteWildfires.py.

3. Import the arcpy and os modules:
import arcpy,os

Chapter 9

185

4. Set the workspace:
arcpy.env.workspace = "C:/ArcpyBook/Ch9/WildfireData/
WildlandFires.mdb"

5. Start a try block:
try:

6. Create a new instance of UpdateCursor inside a with block:
with arcpy.da.UpdateCursor("FireIncidents",("CONFID_
RATING"),'[CONFID_RATING] = \'POOR\'') as cursor:

7. Create a counter variable that will be used to print the progress of the script.
Make sure you indent this line of code and all the lines of code to follow inside
the with block:
cntr = 1

8. Delete the returned rows by calling the deleteRow() method. This is done
by looping through the returned cursor and deleting the rows one at a time:
for row in cursor:
 cursor.deleteRow()
 print "Record number " + str(cntr) + " deleted"
 cntr = cntr + 1

9. Add the except block to print any errors that may occur:
except Exception as e:
 print e.message

10. The entire script should appear as follows:
import arcpy, os

arcpy.env.workspace = "C:/ArcpyBook/Ch9/WildfireData/
WildlandFires.mdb"
try:
 with arcpy.da.UpdateCursor("FireIncidents",("CONFID_
RATING"),'[CONFID_RATING] = \'POOR\'') as cursor:
 cntr = 1
 for row in cursor:
 cursor.deleteRow()
 print "Record number " + str(cntr) + " deleted"
 cntr = cntr + 1
except Exception as e:
 print e.message

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

186

11. Save and run the script. You should see messages being written to the output
window as the script runs. 37 records should be deleted from the FireIncidents
feature class:
Record number 1 deleted

Record number 2 deleted

Record number 3 deleted

Record number 4 deleted

Record number 5 deleted

How it works…
Rows from feature classes and tables can be deleted using the deleteRow() method on
UpdateCursor. In this recipe, we used a where clause in the constructor of UpdateCursor
to limit the records returned to only those features with a CONFID_RATING of POOR. We then
looped through the features returned in the cursor and called the deleteRow() method to
delete the row from the feature class.

Inserting and updating rows inside an edit
session

As I've mentioned throughout the chapter, inserts, updates, or deletes to a table or feature
class done outside an edit session are permanent. They can't be undone. Edit sessions give
you much more flexibility for rolling back any unwanted changes.

Getting ready
Up until now, we've used insert and update cursors to add, edit, and delete data from feature
classes and tables. These changes have been permanent as soon as the script was executed
and can't be undone. The new Editor class in the Data Access module supports the ability
to create edit sessions and operations. With edit sessions, changes applied to feature classes
or tables are temporary until permanently applied with a specific method call. This is the same
functionality provided by the Edit toolbar in ArcGIS Desktop.

Edit sessions begin with a call to Editor.startEditing(), which initiates the session.
Inside the session, you then start an operation with the Editor.startOperation()
method. From within this operation, you then perform various operations that perform edits
on your data. These edits can also be subject to undo, redo, and abort operations for rolling
back, rolling forward, and aborting your editing operations. After the operations have been
completed, you then call the Editor.stopOperation() method followed by Editor.
stopEditing(). Sessions can be ended without saving changes. In this event, changes are
not permanently applied. An overview of this process is provided in the following screenshot:

Chapter 9

187

Edit sessions can also be ended without saving changes. In this event, changes are
not permanently applied. Edit sessions also allow for operations to be applied inside the
session and then either applied permanently to the database or rolled back. In addition,
the Editor class also supports undo and redo operations.

The following code example shows the full edit session stack including the creation of the
Editor object, the beginning of an edit session and an operation, edits to the data (an insert
in this case), stopping the operation, and finally the end of the edit session by saving the data:

edit = arcpy.da.Editor('Database Connections/Portland.sde')
edit.startEditing(False)
edit.startOperation()
with arcpy.da.InsertCursor("Portland.jgp.schools",("SHAPE","Name"))
as cursor:
 cursor.insertRow([7642471.100, 686465.725), 'New School'])
edit.stopOperation()
edit.stopEditing(True)

The Editor class can be used with personal, file, and ArcSDE geodatabases. In addition,
sessions can also be started and stopped on versioned databases. You are limited to editing
only a single workspace at a time, and this workspace is specified in the constructor for the
Editor object simply by passing in a string that references the workspace. Once created,
this Editor object then has access to all the methods for starting, stopping, and aborting
operations, and performing undo and redo operations.

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

188

How to do it…
Follow these steps to wrap UpdateCursor inside an edit session:

1. Open IDLE.

2. Open the c:\ArcpyBook\Ch9\UpdateWildfires.py script and save it to a
new script called c:\ArcpyBook\Ch9\EditSessionUpdateWildfires.py.

3. We're going to make several alterations to this existing script that updates values
in the CONFID_RATING field.

4. Remove the following lines of code:
arcpy.AddField_management("FireIncidents","CONFID_
RATING","TEXT","10")
print "CONFID_RATING field added to FireIncidents"

5. Create an instance of the Editor class and start an edit session. These lines of
code should be placed just inside the try block:
edit = arcpy.da.Editor('C:\ArcpyBook\data\CityOfSanAntonio.gdb')
edit.startEditing(True)

6. Alter the if statement so that it appears as follows:
if row[0] > 40 and row[0] <= 60:
 row[1] = 'GOOD'
elif row[0] > 60 and row[0] <= 85:
 row[1] = 'BETTER'
else:
 row[1] = 'BEST'

7. End the edit session and save edits. Place this line of code just below the
counter increment:
edit.stopEditing(True)

8. The entire script should appear as follows:
import arcpy, os

arcpy.env.workspace = "C:/ArcpyBook/Ch9/WildfireData/
WildlandFires.mdb"

Chapter 9

189

try:
 edit = arcpy.da.Editor('C:\ArcpyBook\data\CityOfSanAntonio.gdb')
 edit.startEditing(True)
 with arcpy.da.UpdateCursor("FireIncidents",("CONFIDENCEVALUE","C
ONFID_RATING")) as cursor:
 cntr = 1
 for row in cursor:
 # update the confid_rating field
 if row[0] > 40 and row[0] <= 60:
 row[1] = 'GOOD'
 elif row[0] > 60 and row[0] <= 85:
 row[1] = 'BETTER'
 else:
 row[1] = 'BEST'
 cursor.updateRow(row)
 print "Record number " + str(cntr) + " updated"
 cntr = cntr + 1
 edit.stopEditing(True)
except Exception as e:
 print e.message

9. Save and run the script.

How it works…
Edit operations should take place inside an edit session, which can be initiated with the
Editor.startEditing() method. The startEditing() method takes two optional
parameters including with_undo and multiuser_mode. The with_undo parameter
accepts a Boolean value of true or false, with a default of true. This creates an undo/redo
stack when set to true. The multiuser_mode parameter defaults to true. When false,
you have full control of editing a non-versioned or versioned dataset. If your dataset is
non-versioned and you use stopEditing(False), your edits will not be committed.
Otherwise, if set to true, your edits will be committed. The Editor.stopEditing()
method takes a single Boolean value of true or false, indicating whether changes
should be saved or not. This defaults to true.

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

190

The Editor class supports undo and redo operations. We'll first look at undo operations.
During an edit session, various edit operations can be applied. In the event that you need
to undo a previous operation, a call to Editor.undoOperation() will remove the most
previous edit operation in the stack. This is illustrated as follows:

Redo operations, initiated by the Editor.redoOperation() method, will redo an
operation that was previously undone. This is illustrated as follows:

Reading geometry from a feature class
There may be times when you need to retrieve the geometric definition of features in a feature
class. ArcPy provides the ability to read this information through various objects.

Getting ready
In ArcPy, feature classes have associated geometry objects including Polygon, Polyline,
PointGeometry, and MultiPoint that you can access from your cursors. These objects
refer to the shape field in the attribute table for a feature class. You can read the geometries
of each feature in a feature class through these objects.

Chapter 9

191

Polyline and polygon feature classes are composed of features containing multiple parts.
You can use the partCount property to return the number of parts per feature and then use
getPart() for each part in the feature to loop through each of the points and pull out the
coordinate information. Point feature classes are composed of one PointGeometry object
per feature that contains the coordinate information for each point.

In this recipe, you will use a SearchCursor and Polygon object to read the geometry of a
polygon feature class.

How to do it…
Follow these steps to learn how to read the geometric information from each feature in a
feature class:

1. Open IDLE and create a new script.

2. Save the script to c:\ArcpyBook\Ch9\ReadGeometry.py.

3. Import the arcpy module:
import arcpy

4. Set the input feature class to the SchoolDistricts polygon feature class:
infc = "c:/ArcpyBook/data/CityOfSanAntonio/SchoolDistricts"

5. Create a SearchCursor object with the input feature class, and return the
ObjectID and Shape fields. The Shape field contains the geometry for each
feature. The cursor will be created inside a for loop that we'll use to iterate
through all the features in the feature class:
for row in arcpy.da.SearchCursor(infc, ["OID@", "SHAPE@"]):
Print the object id of each feature.
Print the current ID
 print("Feature {0}:".format(row[0]))
 partnum = 0

6. Use a for loop to loop through each part of the feature:
 # Step through each part of the feature
 for part in row[1]:
 # Print the part number
 print("Part {0}:".format(partnum))

7. Use a for loop to loop through each vertex in each part and print the x and
y coordinates:
 # Step through each vertex in the feature
 #
 for pnt in part:

Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables

192

 if pnt:
 # Print x,y coordinates of current point
 #
 print("{0}, {1}".format(pnt.X, pnt.Y))
 else:
 # If pnt is None, this represents an interior ring
 #
 print("Interior Ring:")
 partnum += 1

8. Save and run the script. You should see the following output as the script writes the
information for each feature, each part of the feature, and the x and y coordinates
that define each part:
Feature 1:

Part 0:

-98.492224986, 29.380866971

-98.489300049, 29.379610054

-98.486967023, 29.378995028

-98.48503096, 29.376808947

-98.481447988, 29.375624018

-98.478799041, 29.374304981

How it works…
We initially created a SearchCursor object to hold the contents of our feature class. After this,
we looped through each row in the cursor using a for loop. For each row, we looped through all
the parts of the geometry. Remember that polyline and polygon features are composed of two or
more parts. For each part, we also returned the points associated with each part and we printed
the x and y coordinates of each point.

10
Listing and Describing

GIS Data

In this chapter, we will cover the following recipes:

 f Getting a list of feature classes in a workspace

 f Restricting the list of objects returned with a wildcard

 f Restricting the list of objects returned with a feature type

 f Getting a list of fields in a feature class or table

 f Using the Describe() function to return descriptive information about a feature class

 f Using the Describe() function to return descriptive information about an image

 f Returning workspace information with the Describe() function

Listing and Describing GIS Data

194

Introduction
Python provides you the ability to batch process data through scripting. This helps you to
automate workflows and increases the efficiency of your data processing. For example, you
may need to iterate through all the datasets on a disk and perform a specific action on each
dataset. Your first step is often to perform an initial gathering of data before proceeding to the
main body of the geoprocessing task. This initial data gathering is often accomplished through
the use of one or more List methods found in ArcPy. These lists are returned as true Python
list objects. These list objects can then be iterated over for further processing. ArcPy provides a
number of functions that can be used to generate lists of data. These methods work on many
different types of GIS data. In this chapter, we will examine the many functions provided by
ArcPy for creating lists of data. In Chapter 3, Managing Map Documents and Layers, we also
covered a number of list functions. However, these functions were related to working with the
arcpy.mapping module, and specifically for working with map documents and layers. The list
functions we cover in this chapter reside directly in arcpy and are more generic in nature.

We will also cover the Describe() function for returning a dynamic object that will contain
property groups. These dynamically generated Describe objects will contain property groups
that are dependent upon the type of data that has been described. For instance, when the
Describe() function is run against a feature class, the properties specific to a feature class
will be returned. In addition, all data, regardless of the datatype, acquires a set of generic
properties that we'll discuss.

Getting a list of feature classes in a
workspace

As with all the list functions that we'll examine in this chapter, getting a list of feature classes
in a workspace is often the first step in a multi-step process that your script will execute.
For example, you might want to add a new field to all the feature classes in a file geodatabase.
To do this, you'd first need to get a list of all the feature classes in the workspace.

Getting ready
ArcPy provides functions for getting lists of fields, indexes, datasets, feature classes, files,
rasters, tables, and more. The ListFeatureClasses() function can be used to generate
a list of all feature classes in a workspace. ListFeatureClasses() has three optional
arguments that can be passed into the function and which will serve to limit the returned list.
The first optional argument is a wildcard that can be used to limit the feature classes returned
based on name. The second optional argument can be used to limit the feature classes
returned based on the datatype (point, line, polygon, and so on). The third optional parameter
limits the returned feature classes by a feature dataset. In this recipe, we will return all feature
classes from a workspace.

Chapter 10

195

How to do it…
Follow these steps to learn how to use the ListFeatureClasses() function to retrieve
a list of the feature classes in a workspace:

1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch10\ListFeatureClasses.py.

3. Import the arcpy module:
import arcpy

4. Set the workspace:
arcpy.env.workspace = "C:/ArcpyBook/data/CityOfSanAntonio.gdb"

You must always remember to set the workspace using
the environment settings before calling any list function.
Otherwise, the list function will not know which dataset
the list should be pulled from.

5. Call the ListFeatureClasses() function and assign the results to a variable
called fcList:
fcList = arcpy.ListFeatureClasses()

6. Loop through each of the feature classes in fcList and print them to the screen:
for fc in fcList:
 print fc

7. Save and run the script. You should see the following output:
Crimes2009

CityBoundaries

CrimesBySchoolDistrict

SchoolDistricts

BexarCountyBoundaries

Texas_Counties_LowRes

Burglary

Listing and Describing GIS Data

196

How it works…
Before calling any list function, you need to set the workspace environment setting, which sets
the current workspace from which you will generate the list. The ListFeatureClasses()
function can accept three optional parameters that will limit the feature classes that are
returned. Most of the other list functions work in the same way. However, in this case, we've
called the ListFeatureClasses() function without passing in any parameters. What
this will do is return all the feature classes in the current workspace within a Python list
object, which will then be iterated with a for loop. Each feature class returned in the list is
represented as a string containing the name of the feature class.

There's more…
Instead of returning a list of feature classes in a workspace, you may need to get a list of
tables. The ListTables() function returns a list of standalone tables in a workspace.
This list can be filtered by name or table type. Table types can include dBase, INFO, and ALL.
All the values in the list are of the string datatype and contain the table names.

Restricting the list of feature classes
returned with a wildcard

By default, the ListFeatureClasses() function will return all of the feature classes in a
workspace. You will often want to restrict this list in some way. Three optional parameters can be
passed into ListFeatureClasses() to restrict the feature classes returned. All are optional.
The first parameter is a wildcard used to restrict the returned list based on some combination
of characters. Other parameters that can be used to restrict the list to include a datatype and a
feature dataset.

Getting ready
The list of feature classes returned by the ListFeatureClasses() function can be
restricted through the use of a wildcard passed in as the first parameter. The wildcard is
used to restrict the contents of your list based on a name. For example, you may want to
return only a list of feature classes that start with the letter B. To accomplish this, you use
a combination of an asterisk with any number of characters. The following code example
shows the use of a wildcard to restrict the contents of a list:

fcs = arcpy.ListFeatureClasses("B*")

In this recipe, you will learn how to restrict the list of feature classes returned through the
use of a wildcard.

Chapter 10

197

How to do it…
Follow these steps to learn how to restrict the list of feature classes returned by the
ListFeatureClasses() function through the use of a wildcard that is passed in
as the first parameter:

1. Open IDLE and the c:\ArcpyBook\Ch10\ListFeatureClasses.py script.

2. Add a wildcard that restricts the list of feature classes returned to only those feature
classes that start with the letter C:
fcs = arcpy.ListFeatureClasses("C*")

3. Save and run the script to see the following output:
Crimes2009

CityBoundaries

CrimesBySchoolDistrict

How it works…
The ListFeatureClasses() function can accept three optional parameters including
a wildcard that will restrict the list of feature classes by a name. In this case, we used the
wildcard character (*) to restrict the list of feature classes returned to only those that begin
with the letter C.

Restricting the list of feature classes
returned with a feature type.

In addition to using a wildcard to restrict the feature classes returned by
ListFeatureClasses(), you can also filter by feature type.

Getting ready
In addition to using a wildcard to restrict the list returned by the ListFeatureClasses()
function, a type restriction can also be applied in conjunction with the wildcard or by itself.
For example, the following code sample shows the two being used together to restrict the list
returned to only polygon feature classes beginning with the letter B. In this recipe, you will
restrict the feature classes returned through the use of a feature type parameter along with
a wildcard:

fcs = arcpy.ListFeatureClasses("B*", "Polygon")

Listing and Describing GIS Data

198

How to do it…
Follow these steps to learn how to restrict the list of feature classes returned by the
ListFeatureClasses() function by feature type:

1. Open IDLE and the c:\ArcpyBook\Ch10\ListFeatureClasses.py script.

2. Add a second parameter to the ListFeatureClasses() function that restricts
the feature classes returned to only those that start with the letter C and are of
type polygon:
fcs = arcpy.ListFeatureClasses("C*","Polygon")

3. Save and run the script to see the following output:
CityBoundaries

CrimesBySchoolDistrict

How it works…
The second, optional parameter that can be passed into the ListFeatureClasses()
function can be used to limit the results by feature type. In this recipe, we have limited
the feature classes to only polygon features. Other valid feature types include point and
polyline, region.

There's more...
The third, optional parameter that can be passed into the ListFeatureClasses()
function is a feature dataset name. This will filter the list to return only the featured classes
within a particular feature dataset. When this optional parameter is not included in the call
to ListFeatureClasses(), only standalone feature classes from the current workspace
will be returned.

Getting a list of fields in a feature class or
table

Feature classes and tables contain one or more columns of attribute information. You can get
a list of the fields in a feature class through the ListFields() function.

Chapter 10

199

Getting ready
The ListFields() function returns a list containing individual Field objects for each field
in a feature class or table. Some functions, such as ListFields() and ListIndexes(),
require an input dataset to operate on. You can use a wildcard or field type to constrain the
list that is returned. Each Field object contains various read-only properties, including Name,
AliasName, Type, Length, and so on.

How to do it…
Follow these steps to learn how to return a list of fields in a feature class:

1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch10\ListOfFields.py.

3. Import the arcpy module.
import arcpy

4. Set the workspace:
arcpy.env.workspace = "C:/ArcpyBook/data/CityOfSanAntonio.gdb"

5. Call the ListFields() method on the Burglary feature class inside a try block:
try:
 fieldList = arcpy.ListFields("Burglary")

6. Loop through each of the fields in the list of fields and print the name, type, and length.
Make sure you indent as needed:
 for fld in fieldList:
 print "%s is a type of %s with a length of %i" % (fld.name,
fld.type, fld.length)

7. Add the except block:
except Exception e:
 print e.message();

8. The entire script should appear as follows:
import arcpy

arcpy.env.workspace = "C:/ArcpyBook/data/CityOfSanAntonio.gdb"
try:
 fieldList = arcpy.ListFields("Burglary")
 for fld in fieldList:

Listing and Describing GIS Data

200

 print "%s is a type of %s with a length of %i" % (fld.name,
fld.type, fld.length)
except Exception e:
 print e.message()

9. Save and run the script. You should see the following output:
OBJECTID is a type of OID with a length of 4

Shape is a type of Geometry with a length of 0

CASE is a type of String with a length of 11

LOCATION is a type of String with a length of 40

DIST is a type of String with a length of 6

SVCAREA is a type of String with a length of 7

SPLITDT is a type of Date with a length of 8

SPLITTM is a type of Date with a length of 8

HR is a type of String with a length of 3

DOW is a type of String with a length of 3

SHIFT is a type of String with a length of 1

OFFCODE is a type of String with a length of 10

OFFDESC is a type of String with a length of 50

ARCCODE is a type of String with a length of 10

ARCCODE2 is a type of String with a length of 10

ARCTYPE is a type of String with a length of 10

XNAD83 is a type of Double with a length of 8

YNAD83 is a type of Double with a length of 8

How it works…
The ListFields() function returns a list of fields from a feature class or a table. This function
accepts one required parameter, which is a reference to the feature class or table the function
should be executed against. You can limit the fields returned by using a wild card or a field type.
In this recipe, we only specified a feature class, which indicates that all fields will be returned.
For each field returned, we printed the name, field type, and field length. As I mentioned earlier
when discussing the ListFeatureClasses() function, ListFields() and all the other list
functions are often called as the first step in a multi-step process within a script. For example,
you might want to update the population statistics contained within a population field for a
census tracts feature class. To do this, you could get a list of all the fields within a feature class,
loop through this list looking for a specific field name that contains the population information,
and then update the population information for each row. Alternatively, the ListFields()
function accepts a wildcard as one of its parameters. So, if you know the name of the population
field ahead of time, pass this in as the wildcard and only a single field will be returned.

Chapter 10

201

Using the Describe() function to return
descriptive information about a feature
class

All datasets contain information that is descriptive in nature. For example, a feature class has a
name, shape type, spatial reference, and so on. This information can be valuable to your scripts
when you seek specific information before continuing with further processing in the script. For
example, you might want to perform a buffer only on polyline feature classes instead of points
or polygons. Using the Describe() function you can obtain basic descriptive information about
any dataset. You can think of this information as metadata.

Getting ready
The Describe() function provides you with the ability to get basic information about
datasets. These datasets could include feature classes, tables, ArcInfo coverage, layer files,
workspaces, rasters, and others. A Describe object is returned, which contains specific
properties based on the datatype being described. Properties on the Describe object
are organized into property groups, and all datasets fall into at least one property group.
For example, performing a Describe() against a geodatabase would return the GDB
FeatureClass, Table, and Dataset property groups. Each of these property groups
contains specific properties that can be examined.

The Describe() function accepts a string parameter, which is a pointer to a data source.
In the following code example, we pass in a feature class contained within a file geodatabase.
The function returns a Describe object that contains a set of dynamic properties called
property groups. We can then access these various properties, as we have done in this case,
by simply printing the properties using the print function:

arcpy.env.workspace = "c:/ArcpyBook/Ch10/CityOfSanAntonio.gdb"

desc = arcpy.Describe("Schools")

print "The feature type is: " + desc.featureType

The feature type is: Simple

print "The shape type is: " + desc.shapeType

The shape type is: Polygon

print "The name is: " + desc.name

The name is: Schools

print "The path to the data is: " + desc.path

The path to the data is: c:/ArcpyBook/Ch10/CityOfSanAntonio.gdb

Listing and Describing GIS Data

202

All datasets, irrespective of their type, contain a default set of properties located on the
Describe object. These are read-only properties. Some of the more commonly used
properties include dataType, catalogPath, name, path, and file.

In this recipe, you will write a script that obtains descriptive information about a feature class
using the Describe() function.

How to do it…
Follow these steps to learn how to obtain descriptive information about a feature class:

1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch10\DescribeFeatureClass.py.

3. Import the arcpy module.

4. import arcpy Set the workspace:
arcpy.env.workspace = "C:/ArcpyBook/data/CityOfSanAntonio.gdb"

5. Start a try block:
try:

6. Call the Describe() function on the Burglary feature class and print the
shape type:
descFC = arcpy.Describe("Burglary")
print "The shape type is: " + descFC.ShapeType

7. Get a list of fields in the feature class and print the name, type, and length of each:
flds = descFC.fields
for fld in flds:
 print "Field: " + fld.name
 print "Type: " + fld.type
 print "Length: " + str(fld.length)

8. Get the geographic extent of the feature class and print the coordinates that define
the extent:
ext = descFC.extent
print "XMin: %f" % (ext.XMin)
print "YMin: %f" % (ext.YMin)
print "XMax: %f" % (ext.XMax)
print "YMax: %f" % (ext.YMax)

Chapter 10

203

9. Add the except block:
except Exception e:
 print e.message()

10. The entire script should appear as follows:
import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data/CityOfSanAntonio.gdb"
try:
 descFC = arcpy.Describe("Burglary")
 print "The shape type is: " + descFC.ShapeType
 flds = descFC.fields
 for fld in flds:
 print "Field: " + fld.name
 print "Type: " + fld.type
 print "Length: " + str(fld.length)
 ext = descFC.extent
 print "XMin: %f" % (ext.XMin)
 print "YMin: %f" % (ext.YMin)
 print "XMax: %f" % (ext.XMax)
 print "YMax: %f" % (ext.YMax)
except:
 print arcpy.GetMessages()

11. Save and run the script. You should see the following output:
The shape type is: Point
Field: OBJECTID
Type: OID
Length: 4
Field: Shape
Type: Geometry
Length: 0
Field: CASE
Type: String
Length: 11
Field: LOCATION
Type: String
Length: 40
.....
.....
XMin: -103.518030
YMin: -6.145758
XMax: -98.243208
YMax: 29.676404

Listing and Describing GIS Data

204

How it works…
Executing a Describe() function against a feature class, which we have done in this script,
returns a FeatureClass property group along with access to the Table and Dataset
property groups. In addition to returning a FeatureClass property group, you also have
access to a Table properties group.

The Table property group is important primarily because it gives you access to the fields in
a standalone table or feature class. You can also access any indexes on the table or feature
class through this property group. The Fields property on table properties returns a Python
list containing one Field object for each field in the feature class. Each field has a number
of read-only properties including the name, alias, length, type, scale, precision, and
so on. The most obviously useful properties are name and type. In this script, we printed the
field name, type, and length. Note the use of a Python for loop to process each field in the
Python list.

Finally, we printed out the geographic extent of the layer through the use of the Extent
object, returned by the extent property on the Dataset property group. The Dataset
property group contains a number of useful properties. Perhaps, the most used properties
include extent and spatialReference, as many geoprocessing tools and scripts require
this information at some point during execution. You can also obtain the datasetType and
versioning information along with several other properties.

Using the Describe() function to return
descriptive information about an image

Raster files also contain descriptive information, which can be returned by the
Describe() function.

Getting ready
A raster dataset can also be described through the use of the Describe() function.
In this recipe, you will describe a raster dataset by returning its extent and spatial reference.
The Describe() function contains a reference to the general purpose Dataset properties
group as well, which contains a reference to the SpatialReference object for the dataset.
The SpatialReference object can then be used to get detailed spatial reference information
for the dataset.

Chapter 10

205

How to do it…
Follow these steps to learn how to obtain descriptive information about a raster image file:

1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch10\DescribeRaster.py.

3. Import the arcpy module:
import arcpy

4. Set the workspace:
arcpy.env.workspace = "C:/ArcpyBook/data"

5. Start a try block:
try:

6. Call the Describe() function on a raster dataset making sure you indent the next
few lines of code inside the try statement:
descRaster = arcpy.Describe("AUSTIN_EAST_NW.sid")

7. Get the extent of the raster dataset and print it:
ext = descRaster.extent
print "XMin: %f" % (ext.XMin)
print "YMin: %f" % (ext.YMin)
print "XMax: %f" % (ext.XMax)
print "YMax: %f" % (ext.YMax)

8. Get a reference to the SpatialReference object and print it:
sr = descRaster.SpatialReference
print sr.name
print sr.type

9. Add the except block:
except Exception e:
 print e.message()

10. The entire script should appear as follows:
import arcpy
arcpy.env.workspace = "c:/ArcpyBook/data"
try:
 descRaster = arcpy.Describe("AUSTIN_EAST_NW.sid")
 ext = descRaster.extent

Listing and Describing GIS Data

206

 print "XMin: %f" % (ext.XMin)
 print "YMin: %f" % (ext.YMin)
 print "XMax: %f" % (ext.XMax)
 print "YMax: %f" % (ext.YMax)

 sr = descRaster.SpatialReference
 print sr.name
 print sr.type
except:
 print arcpy.GetMessages()

11. Save raster and run the script. You should see the following output:
XMin: 3111134.862457

YMin: 10086853.262238

XMax: 3131385.723907

YMax: 10110047.019228

NAD83_Texas_Central

Projected

How it works…
This recipe is very similar to the previous one. The difference is that we're using the
Describe() function against a raster dataset instead of against a vector feature class. In both
cases, we've returned the geographic extent of the datasets using the extent object. However,
in the script we've also obtained the SpatialReference object for the raster dataset and
printed the information about this object including the name and type.

Returning workspace information with the
Describe() function

There are several different types of geodatabases that can be used with ArcGIS, including
personal, file, and enterprise. As we saw in Chapter 8, Querying and Selecting Data, the
construction of queries will vary depending upon the type of geodatabase a dataset resides
within. Your scripts may or may not know the geodatabase type ahead of time. To make your
scripts more robust in the case of queries, you could use the Describe() function against
a workspace to capture this information and construct your query accordingly.

Chapter 10

207

Getting ready
The Workspace property group provides information about a workspace (such as a folder,
personal or file geodatabase, or enterprise geodatabase). These properties are particularly
helpful when obtaining information about an ArcSDE connection. Information that can
be obtained through this property group includes the connection information when the
workspace is an ArcSDE workspace, domains associated with the geodatabase, and the
workspace type, which can be FileSystem, LocalDatabase, or RemoteDatabase.
LocalDatabase refers to personal or file geodatabases, while RemoteDatabase refers
to an ArcSDE geodatabase. In this recipe, you'll use the Workspace property group to
obtain information about a file geodatabase.

How to do it…
Follow these steps to learn how to obtain descriptive information about a workspace:

1. Open IDLE and create a new script window.

2. Save the script as c:\ArcpyBook\Ch10\DescribeWorkspace.py.

3. Import the arcpy module:
import arcpy

4. Start a try block:
try:

5. Call the Describe() function on the CityOfSanAntonio geodatabase and make
sure to indent this statement inside the try statement. The two print statements
below should also be indented.
descRaster = arcpy.Describe("c:/ArcpyBook/data/CityOfSanAntonio.
gdb")

6. Print the workspace type:
print descWorkspace.workspaceType

7. Print the detailed workspace information:
print descWorkspace.workspaceFactoryProgID

8. Add the except block:
except Exception e:
 print e.message()

9. Save and run the script. You should see the following output:
LocalDatabase

esriDataSourcesGDB.FileGDBWorkspaceFactory.1

Listing and Describing GIS Data

208

How it works…
The workspaceType property returns one of three values: FileSystem, LocalDatabase,
or RemoteDatabase. The localDatabase value indicates that you're working with
either a personal or file geodatabase. However, it isn't any more specific. To get the specific
geodatabase, you can retrieve the workspaceFactoryProgID property, which will indicate
the type of geodatabase. In this case, it's a file geodatabase.

11
Customizing the ArcGIS

Interface with Add-Ins

In this chapter, we will cover the following recipes:

 f Downloading and installing the Python Add-In wizard

 f Creating a button add-in

 f Installing and testing an add-in

 f Creating a tool add-in

Introduction
In this chapter, we're going to cover the creation, testing, editing, and sharing of add-ins
created with Python. Add-ins provide a way of adding user interface items to ArcGIS Desktop
through a modular code base designed to perform specific actions. Interface components
can include buttons, tools, toolbars, menus, combo boxes, tool palettes, and application
extensions. The add-in concept was first introduced in ArcGIS Desktop 10.0 and could be
created with .NET or Java. However, with the release of ArcGIS 10.1, add-ins can now be
created with Python. Add-ins are created using Python scripts and an XML file that defines
how the user interface should appear.

Add-ins provide an easy way to distribute user interface customizations to end users.
No installation programs are necessary. A single compressed file with a file extension of
.esriaddin is copied to a well-known folder, and ArcGIS Desktop handles the rest. To
simplify the development even further, a Python Add-In wizard has been provided by Esri. You
can download the wizard from the Esri website. We'll do that in our first recipe in this chapter.

Customizing the ArcGIS Interface with Add-Ins

210

There are a number of add-in types that can be created. Buttons and tools are the simplest
type of add-ins that you can create. Buttons simply execute business logic when clicked.
Tools are similar to buttons but require interaction with the map before the business
logic is executed. Combo boxes provide a list of choices for the user to select from.

There are also a number of container objects including menus, toolbars, tool palettes, and
application extensions. Menus act as a container for buttons or other menus. Toolbars are
a container for buttons, tools, combo boxes, tool palettes, and menus. They are the most
versatile of the add-in container types. Tool palettes also act as a container for tools, and
need to be added to a toolbar before the tools will be exposed. Finally, application extensions
are the most complex add-in type. This type of add-in coordinates activities between other
components and is responsible for listening for and responding to various events, such as
the addition or removal of a layer from a data frame.

Downloading and installing the Python
Add-In wizard

Esri provides a tool that you can use to make the development of add-ins easier. The Python
Add-In wizard can be downloaded from the Esri website and is a great resource for creating
your add-ins.

Getting ready
The Python Add-In Wizard, is a great resource for creating the necessary files for an add-in.
It generates the required files for the add-ins from a visual interface. In this recipe, you will
download and install the Python Add-In wizard.

How to do it…
Follow these steps to learn how to download and install the Python Add-in wizard:

1. Open a web browser and navigate to: http://www.arcgis.com/home/item.htm
l?id=5f3aefe77f6b4f61ad3e4c62f30bff3b.

http://www.arcgis.com/home/item.html?id=5f3aefe77f6b4f61ad3e4c62f30bff3b
http://www.arcgis.com/home/item.html?id=5f3aefe77f6b4f61ad3e4c62f30bff3b

Chapter 11

211

You should see a web page similar to the following screenshot:

2. Click on the Open button to download the installer file.

3. Using Windows Explorer, create a new folder called Python Add-In Wizard
somewhere on your computer. The name of the folder is irrelevant, but to keep
things simple and easy to remember you should go with Python Add-In Wizard
or something similar.

4. Unzip the file to this new folder There are many utilities that can be used to unzip a
file. Each will differ slightly in how they are used but with WinZip, you should be able
to right-click on the file and select Extract.

Customizing the ArcGIS Interface with Add-Ins

212

5. Open the bin folder that was unzipped and double-click on addin_assistant.
exe to run the wizard. In the following screenshot, I have created a new folder called
Python Add-In Wizard and unzipped the downloaded file. The bin folder was
created and inside this folder is a file called addin_assistant.exe:

6. Double-clicking on addin_assistant.exe will prompt you to choose a directory
to use as the add-in project root:

Chapter 11

213

How it works…
The Python Add-In wizard is a visual interface tool that you can use to create add-ins for
ArcGIS Desktop. It greatly simplifies the process through a point-and-click tool. In the next
recipe, you'll create basic ArcGIS Desktop add-in using the wizard.

Creating a button add-in
Button add-ins are the simplest types of add-ins and are also the most commonly used.
With button add-ins, the functionality that you code in your script is executed each time
the button is clicked.

Getting ready
Creating an add-in project is the first step in the creation of a new add-in. To create a project
using the Python Add-In wizard, you select a working directory, enter various project settings,
and click on the Save button. Creation of the add-in then follows a well-defined process, as
illustrated in the following screenshot:

You must first create a container for the add-in and this can be either a toolbar or a menu. Next,
create the button, tool, or another add-in that you want to add to the container. In this recipe,
we'll just assume it's a button. Next, you need to edit the Python script associated with the
button. You'll also want to test the button to make sure it works as expected. Finally, you can
share the add-in with others. In this recipe, you'll learn how to use the Add-In wizard to create a
button add-in for ArcGIS Desktop. The button add-in will run a custom script tool that you created
in an earlier recipe, which loads wildfire data from a text file to a point feature class.

Customizing the ArcGIS Interface with Add-Ins

214

How to do it...
Follow these steps to learn how to create a button add-in:

1. Open the ArcGIS Python Add-In wizard by double-clicking on the addin_assistant.
exe file located in the bin folder, where you extracted the wizard.

2. Create a new project folder called Wildfire_Addin and click OK:

Chapter 11

215

3. The Project Settings tab should be active initially and display the working directory
you just created. By default, ArcMap should be the selected product, but you should
verify that this is the case:

Customizing the ArcGIS Interface with Add-Ins

216

4. Give your project a name. We'll call it Load Wildfire Data Addin:

Chapter 11

217

5. By default, the Version is 0.1. You can change this if you'd like. Version numbers
should change as you update or make additions to your tool. This helps with
tracking and sharing of your add-ins:

Customizing the ArcGIS Interface with Add-Ins

218

6. The name and version properties are the only two required properties. It's a good
practice to go ahead and add the company, description, and author information as
shown in the following screenshot. Add your own information:

Chapter 11

219

7. You may also wish to add an image for the add-in. A file called wildfire.png has
been provided for this purpose in the C:\ArcpyBook\Ch11 folder:

Customizing the ArcGIS Interface with Add-Ins

220

8. The Add-In Contents tab is used to define the various add-ins that can be created.
In this step, we're going to create a toolbar to hold a single button add-in that runs a
wildfire script, which imports fires from a text file into a feature class. Click on the
Add-In Contents tab:

9. In the Add-In Contents tab, right-click on Toolbars and select New Toolbar. Give the
toolbar a caption, accept the default ID, and make sure the Show Initially checkbox
is selected:

Chapter 11

221

The Toolbar add-in, while it doesn't do a whole lot functionally, is very important
because it acts as a container for other add-ins such as buttons, tools, combo
boxes, tool palettes, and menus. Toolbars can be floating or docked. Creating
a toolbar add-in is easy using the Python Add-In wizard.

10. Click on the Save button.

11. Now, we'll add a button by right-clicking on the new Wildfire Toolbar option and
selecting New Button.

12. Fill in the button details including a caption, class name, ID, tooltip, and others.
You can also include an image for the control. I haven't done so in this case, but you
may want to do so. This information is saved to the configuration file for the add-in:

Customizing the ArcGIS Interface with Add-Ins

222

13. Click on the Save button.

Add-ins have a Python script that they are attached to. This file, by default,
will be named AddIns_addin.py and can be found in the install
directory of your working project folder.

14. We've already created a custom ArcToolbox Python script tool that loads a
comma-delimited text file from a disk containing wildfire data into a feature
class. We will be using this script in our add-in. In Windows Explorer, go to the
addin directory you created earlier. It should be called Wildfire_Addin.
Go to the Install folder and you should find a file called WildfireAddin_addin.
py. Load this file into your Python editor.

15. Find the onClick(self) method, shown in the following code snippet.
This method is triggered when the button is clicked:
import arcpy
import pythonaddins

class ButtonClassImportWildfires(object):
 """Implementation for WildfireAddIn_addin.button (Button)"""
 def __init__(self):
 self.enabled = True
 self.checked = False
 def onClick(self):
 pass

16. Remove the pass statement from the onClick event.

17. In Chapter 7, you created a custom script tool that loads wildfire data from a text
file to a feature class. Inside the onClick event, call this Load Wildfires from Text
custom script tool so that it displays the user interface for selecting the text file,
template, and feature class to write to.
def onClick(self):
 LoadWildfires_wildfire()

18. Save the file.

In the next recipe, you will learn how to install your new add-in.

Chapter 11

223

How it works...
As you've seen in this recipe, the Python Add-In wizard handles the creation of the add-in
through a visual interface. However, behind the scenes, the wizard creates a set of folders and
files for the add-in. The add-in file structure is really quite simple. Two folders and a set of files
comprise the add-in structure. You can see this structure in the following screenshot:

The Images folder contains any icons or other image files used by your add-in. In this recipe,
we used the wildfire.png image. So, this file should now be in the Images folder. The
Install folder contains the Python script that handles the business logic of the add-in. This
is the file you work with extensively to code the add-in. It performs whatever business logic
needs to be performed by the buttons, tools, menu items, and so on. The config.xml file in
the main folder of the add-in defines the user interface and any static properties such as the
name, author, version, and so on. The makeaddin.py file can be double-clicked to create
the .esriaddin file, which wraps everything into a compressed file with an .esriaddin
extension. This .esriaddin file is what will be distributed to end users, so that the add-in
can be installed.

Installing and testing an add-in
You'll want to test add-ins before distributing them to your end users. For testing, you first
need to install the add-in.

Getting ready
In the working folder for your add-in, the makeaddin.py script can be used to copy all
files and folders to a compressed add-in folder in a working directory with the file format
<working folder name>.esriaddin. Double-click on this .esriaddin file to launch
the ESRI ArcGIS add-in installation utility, which will install your add-in. You can then go into
ArcGIS Desktop and test the add-in. The custom toolbar or menu may already be visible and
ready to test. If it is not visible, go to the Customize menu and click on Add-in Manager. The
Add-In Manager dialog box lists the installed add-ins that target the current application. Add-
in information, such as name, description, and image, which are entered as project settings
should be displayed.

Customizing the ArcGIS Interface with Add-Ins

224

How to do it…
To learn how to install and test a Python add-in, please follow these steps:

1. Inside the main folder for your add-in will be a Python script file called makeaddin.
py. This script creates the .esriaddin file. Double-click on the script to execute and
create the .esriaddin file. This process is illustrated in the following screenshot:

2. To install the add-in for ArcGIS Desktop, double-click on the Widlfire_Add-In.
esriaddin file, which will launch the Esri ArcGIS Add-In Installation Utility window,
as shown in the following screenshot:

Chapter 11

225

3. Click on Install Add-In. If everything was successful, you should see the
following message:

4. To test the add-in, open ArcMap. Your add-in may already be active. If not, select
Customize | Add-In Manager. This will display the Add-In Manager dialog box ,
as shown in the following screenshot. You should be able to see the add-in that
you created:

Customizing the ArcGIS Interface with Add-Ins

226

5. If needed, select the Customize button. To add the toolbar to the application, click on
the Toolbars tab and choose the toolbar you created:

How it works…
The utility will place the add-in into a well-known folder discoverable by ArcGIS Desktop.
The well-known folder locations are as follows:

 f Vista/7: C:\Users\<username>\Documents\ArcGIS\AddIns\
Desktop10.1

 f XP: C:\Documents and Settings\<username>\My Documents\ArcGIS\
AddIns\Desktop10.1

A folder with a globally unique identifier or GUID name will be created inside the
well-known folder. The add-in will reside inside this unique folder name. This is
illustrated in the following screenshots. When ArcGIS Desktop starts, it will search
these directories and load the add-ins:

Chapter 11

227

The add-in will look similar to the following:

The default add-in folder is located in the ArcGIS folder within your
user account. For example, if your ArcGIS installation is version 10.1,
the add-in is copied to the following location on a Vista or Windows
7 operating system: c:\users\<username>\Documents\
ArcGIS\AddIns\Desktop10.1.

You can also use a private network drive to distribute add-ins to end users. The Add-In
Manager in ArcGIS Desktop adds and maintains lists of folders that can be searched for add-
ins. Select the Options tab and then Add Folder to add a network drive to the list.

Creating a tool add-in
Tool add-ins are similar to buttons, with the exception that tools require some type of
interaction with the map. The Zoom In tool, for example, is a type of tool. Tools should
be placed inside a toolbar or tool palette. The properties are much the same as you'd
find with a button. You'll also need to edit the Python script.

Getting ready
The Tool class has a number of properties including cursor, enabled, and shape. The
cursor property sets the cursor for the tool when it is clicked, and is defined as an integer
value corresponding to the cursor types, as follows:

Customizing the ArcGIS Interface with Add-Ins

228

By default, tools are enabled. This can be changed, though, by setting the enabled property to
false. Finally, the shape property specifies the type of shape to be drawn and can be a line,
rectangle, or circle. These properties are typically set inside the constructor for the tool which is
defined by the __init__ method, as shown in the following code example. self refers to the
current object (a tool in this case) and is a variable that refers to this current object:

def __init__(self):
 self.enabled = True
 self.cursor = 3
 self.shape = 'Rectangle'

There are a number of functions associated with the Tool class. All classes will have
a constructor, which is used to define the properties for the class. You saw an example
of this __init__ function earlier. Other important functions of the tool class include
onRectangle(), onCircle(), and onLine(). These functions correspond to the
shape that will be drawn on the map with the tool. The geometry of the drawn shape is
passed into the function. There are also a number of mouse and key functions that can be
used. Finally, the deactivate() function can be called when you want to deactivate the tool.

We've already seen the constructor for the Tool class in action. This function, called __
init__, is used to set various properties for the tool when it is created. Here, we've also
shown the onRectangle() function for the Tool class. This function is called when a
rectangle is drawn on the map. The geometry of the rectangle is passed into the function
along with a reference to the tool itself:

def onRectangle(self, rectangle_geometry):

In this recipe, you will learn how to create a tool add-in that responds to the user dragging a
rectangle on the map. The tool will use the Generate Random Points tool to generate points
within the rectangle.

How to do it...
Follow these steps to create a tool add-in with the ArcGIS Python Add-In wizard:

1. Open the ArcGIS Python Add-In wizard by double-clicking on the addin_assistant.
exe file located in the bin folder, where you extracted the wizard.

2. Create a new project folder called Generate_Random_Points and click OK.

Chapter 11

229

3. In the Project Settings tab, enter properties including Name, Version, Company,
Description, and Author:

4. Click on the Add-In Contents tab.

5. Right-click on Toolbars and select New Toolbar.

6. Set the caption for the toolbar to Random Points Toolbar.

7. Right-click on the newly created Random Points Toolbar and select New Tool.

Customizing the ArcGIS Interface with Add-Ins

230

8. Enter items for the tool as shown in the following screenshot:

9. Click on Save. This will generate the folder and file structure for the add-in.

10. Go to the Install folder for the new add-in and open GenerateRandomPoints_
addin.py in IDLE.

11. Add the following code to the __init__ function, which is the constructor for
the tool:
def __init__(self):
 self.enabled = True
 self.cursor = 3
 self.shape = 'Rectangle'

12. In the onRectangle() function, write code to generate a set of random
points within the rectangle drawn on the screen:
def onRectangle(self, rectangle_geometry):
 extent = rectangle_geometry

Chapter 11

231

 arcpy.env.workspace = r'c:\ArcpyBook\Ch11'
 if arcpy.Exists('randompts.shp'):
 arcpy.Delete_management('randompts.shp')
 randompts = arcpy.CreateRandomPoints_management(arcpy.env.
workspace,'randompts.shp',"",rectangle_geometry)
 arcpy.RefreshActiveView()
 return randompts

13. Save the file.

14. Generate the .esriaddin file by double-clicking on the makeaddin.py file in the
main folder for the add-in.

15. Install the add-in by double-clicking on Generate_Random_Points.esriaddin.

16. Open ArcMap with a new map document file and add the Generate Random Points
toolbar if necessary.

17. Add the BexarCountyBoundaries feature class from C:\ArcpyBook\data\
CityOfSanAntonio.gdb.

18. Test the add-in by dragging a rectangle on the map. The output should appear
similar to the following screenshot. Your map will vary though because the points
are generated randomly:

Customizing the ArcGIS Interface with Add-Ins

232

How it works...
Tool add-ins are very similar to button add-ins, the difference being that tool add-ins require
some sort of interaction with the map before the functionality is triggered. An interaction
with the map can be a number of things including clicking on the map, drawing a polygon or
rectangle, or performing various mouse or key events. Python code is written to respond to
one or more of these events. In this recipe, you learned how to write code that responds to the
onRectangle() event. You also set various properties inside the constructor for the add-in
including cursor and shape, which will be drawn on the map.

There's more…
There are a number of additional add-ins that you can create. The ComboBox add-in
provides a drop-down list of values that the user can select from, or alternatively they
can type a new value into an editable field. As with the other add-ins, you'll first want
to create a new project with the Python Add-In wizard, add a new toolbar, and then
create a combo box to add to the toolbar.

The Tool Palette provides a way of grouping related tools. It does need to be added to
an existing toolbar. By default, tools will be added to the palette in a grid-like pattern.

The Menu add-in acts as a container for buttons and other menus. Menus, in addition
to being displayed by the ArcGIS Desktop Add-in Manager, will also be displayed in the
Customize dialog box for ArcGIS Desktop.

Application extensions are used to add specific sets of related functionality to ArcGIS
Desktop. Several examples include Spatial Analyst, 3D Analyst, and Business Analyst.
Typically, application extensions are responsible for listening for events and handling
them. For example, you could create an application extension that saves the map
document file each time a user adds a layer to the map. Application extensions
also coordinate activities between components.

12
Error Handling and

Troubleshooting

In this chapter, we will cover the following recipes:

 f Exploring the default Python error message
 f Adding Python exception handling structures (try/except/finally)
 f Retrieving tool messages with GetMessages()
 f Filtering tool messages by severity level
 f Returning individual messages with GetMessage()
 f Testing for and responding to specific error messages

Introduction
Various messages are returned during the execution of ArcGIS geoprocessing tools and
functions. These messages can be informational in nature or indicate warning or error
conditions that can result in the tool not creating the expected output or in outright failure
of the tool to execute. These messages do not appear as message boxes. Instead, you
will need to retrieve them using various ArcPy functions. To this point in the book, we have
ignored the existence of these messages, warnings, and errors. This is mainly due to the fact
that I wanted you to concentrate on learning some basic concepts, without adding the extra
layer of code complexity that is necessary for creating robust geoprocessing scripts that can
handle error situations gracefully. That being said, it's now time that you learn how to create
the geoprocessing and Python exception handling structures that will enable you to create
versatile geoprocessing scripts. These scripts can handle messages that indicate warnings,
errors, and general information, which are generated while your script is running. These code
details will help make your scripts more flexible and less error prone. You've already used the
basic try and except blocks to perform some basic error handling. But, in this chapter, we'll
go into more detail about why and how these structures are used.

Error Handling and Troubleshooting

234

Exploring the default Python error message
By default, Python will generate an error message anytime it encounters a problem in your
script. These error messages will not always be very informative to the end user running the
script. However, it is valuable to take a look at these raw messages. In later recipes, we'll use
Python error handling structures to get a cleaner look at the errors and respond as necessary.

Getting ready
In this recipe, we will create and run a script that intentionally contains error conditions. We
will not include any geoprocessing or Python exception handling techniques in the script. We're
intentionally doing this, because I want you to see the error information returned by Python.

How to do it…
Follow the steps below to see a raw Python error message that is generated when an error
occurs while a tool is being executed in a script:

1. Open IDLE and create a new script.

2. Save the script to c:\ArcpyBook\Ch12\ErrorHandling.py.

3. Import the arcpy module:
import arcpy

4. Set the workspace:
arcpy.env.workspace = "c:/ArcpyBook/data"

5. Call the Buffer tool. The Buffer tool requires a buffer distance be entered as
one of its parameters. In this code block, we have intentionally left out the distance
parameter:
arcpy.Buffer_analysis("Streams.shp","Streams_Buff.shp")

6. Run the script. You should see the following error message:

 Runtime error Traceback (most recent call last): File "<string>",
line 1, in <module> File "c:\program files (x86)\arcgis\
desktop10.1\arcpy\arcpy\analysis.py", line 687, in Buffer raise e
ExecuteError: Failed to execute. Parameters are not valid. ERROR
000735: Distance [value or field]: Value is required Failed to
execute (Buffer).

Chapter 12

235

How it works…
What you see in the output error message isn't terribly informative. If you are a fairly
experienced programmer, you'll generally be able to make out what the problem is. In this
case we did not include a buffer distance. However, in many cases, the returned error
message will not give you much information that you can use to resolve the problem. Errors in
your code are simply a fact of life in programming. However, how your code responds to these
errors, also called exceptions, is very important. You should plan to handle errors gracefully
through the use of Python error handling structures, which examine arcpy generated
exceptions and act accordingly. Without these structures in place, your scripts will fail
immediately, frustrating your users in the process.

Adding Python exception handling
structures (try/except/finally)

Python has built-in exception handling structures that allow you to capture error messages
that are generated. Using this error information, you can then display a more appropriate
message to the end user and respond to the situation as needed.

Getting ready
Exceptions are unusual or error conditions that occur in your code. Exception statements in
Python enable you to trap and handle errors in your code, allowing you to gracefully recover
from error conditions. In addition to error handling, exceptions can be used for a variety of
other things including event notification and special-case handling.

Python exceptions occur in two ways. Exceptions in Python can either be intercepted or
triggered. When an error condition occurs in your code, Python automatically triggers an
exception, which may or may not be handled by your code. It is up to you as a programmer to
catch an automatically triggered exception. Exceptions can also be triggered manually by your
code. In this case, you would also provide an exception handling routine to catch these manually
triggered exceptions. You can manually trigger an exception by using the raise statement.

The try/except statement is a complete, compound Python statement used to handle
exceptions. This variety of try statement starts with a try header line followed by a block of
indented statements, then one or more optional except clauses that name exceptions to be
caught, and an optional else clause at the end.

The try/except/else statement works as follows. Once inside a try statement, Python
marks the fact that you are in a try block and knows that any exception condition that occurs
within this block will be forwarded to the various except statements for handling.

Error Handling and Troubleshooting

236

Each statement inside the try block is executed. Assuming that no exception conditions occur,
the code pointer will then jump to the else statement and execute the code block contained
within the else statement before moving to the next line of code below the try block. If an
exception occurs inside the try block, Python searches for a matching exception code. If a
matching exception is found, the code block inside the except block is executed. The code then
picks up below the full try statement. The else statements are not executed in this case. If a
matching exception header is not found, Python will propagate the exception to a try statement
above this code block. In the event that no matching except header is found, the exception
comes out of the top level of the process. This results in an unhandled exception and you wind
up with the type of error message that we saw in our first recipe in this chapter.

In this recipe, we're going to add in some basic Python exception handling structures. There
are several variations of the try/except/else/finally exception handling structure. In
this recipe, we'll start with a very simple try/except structure.

How to do it…
Follow the steps below to add Python error handling structures to a script:

1. If necessary, open the c:\ArcpyBook\Ch12\ErrorHandling.py file in IDLE.

2. Alter your script to include a try/except block:
import arcpy
try:
 arcpy.env.workspace = "c:/ArcpyBook/data"
 arcpy.Buffer_analysis("Streams.shp","Streams_Buff.shp")
except:
 print "Error"

3. Save and run the script. You should see the simple message Error. That's not any
more helpful than the output we received in our first recipe. In fact, it's even less
useful. However, the point of this recipe is simply to introduce you to the try/except
error handling structure.

How it works…
This is an extremely simple structure. The try block indicates that everything indented under
the try statement will be subject to exception handling. If an exception of any type is found,
control of the code processing jumps to the except section and prints the error message(s),
which in this case is simply Error. Now, as I mentioned, this is hardly informative to your
users, but hopefully it gives you a basic idea of how try/except blocks work, and as a
programmer you will better understand any errors reported by your users. In the next
recipe, you'll learn how to add tool-generated messages to this structure.

Chapter 12

237

There's more…
The other type of try statement is the try/finally statement, which allows for finalization
actions. When a finally clause is used in a try statement, its block of statements always run
at the very end, whether an error condition occurs or not. The try/finally statement works
as follows. If an exception occurs, Python runs the try block, then the finally block, and
then execution continues past the entire try statement. If an exception does not occur during
execution, Python runs the try block, then the finally block, and then execution is passed
back to a higher level try statement. This is useful when you want to make sure an action takes
place after a code block runs regardless of whether or not an error condition occurs.

Retrieving tool messages with
GetMessages()

ArcPy includes a GetMessages() function that you can use to retrieve messages generated
when an ArcGIS tool is executing. Messages can include informational messages, such as the
start and ends times of a tool execution as well as warnings and errors, which can result in
something less than the desired result or complete failure of the tool to execute to completion.

Getting ready
During the execution of a tool, various messages are generated. These messages include
informational messages, such as the start and end times of a tool execution, parameter
values passed to the tool, and progress information. In addition, warnings and errors can also
be generated by the tool. These messages can be read by your Python script, and your code
can be designed to appropriately handle any warnings or errors that have been generated.

ArcPy stores the messages from the last tool that was executed and you can retrieve these
messages using the GetMessages() function, which returns a single string containing all
messages from the tool that was last executed. You can filter this string by severity to return
only certain types of messages, such as warnings or errors. The first message will always
include the name of the tool executed, and the last message is the start and end time.

In this recipe, you will add a line of code to the except statement, which will print more
descriptive information about the current tool run.

How to do it…
Follow these steps to learn how to add a GetMessages() function to your script that
generates a list of messages from the tool last executed.

1. If necessary, open the c:\ArcpyBook\Ch12\ErrorHandling.py file in IDLE.

Error Handling and Troubleshooting

238

2. Alter your script to include the GetMessages() function:
import arcpy
try:
 arcpy.env.workspace = "c:/ArcpyBook/data"
 arcpy.Buffer_analysis("Streams.shp","Streams_Buff.shp")
except:
 print arcpy.GetMessages()

3. Save and run the script. This time, the error message should be much more
informative. Also notice that there are other types of messages that are generated
including the start and end times of the script's execution:

Executing: Buffer c:/ArcpyBook/data\Streams.shp c:/ArcpyBook/data\
Streams_Buff.shp # FULL ROUND NONE #

Start Time: Tue Nov 13 22:23:04 2012

Failed to execute. Parameters are not valid.

ERROR 000735: Distance [value or field]: Value is required

Failed to execute (Buffer).

Failed at Tue Nov 13 22:23:04 2012 (Elapsed Time: 0.00 seconds)

How it works…
The GetMessages() function returns all the messages generated by the last tool that was
run. I want to emphasize that it only returns messages from the last tool that was run. Keep
this in mind if you have a script with multiple tools that are being run. Historical tool run
messages are not accessible through this function. However, there is a Result object
that you can use if you need to retrieve historical tool run messages.

Filtering tool messages by severity level
As I mentioned in the last recipe, all tools generate a number of messages that can be
classified as information, warning, or error messages. The GetMessages() method accepts
a parameter that allows you to filter the messages that are returned. For example, you may
not be interested in the informative or warning messages in your script. However, you are
certainly interested in error messages as they indicate a fatal error that will not allow a tool
to successfully execute. Using GetMessages(), you can filter the returned message to only
error messages.

Chapter 12

239

Getting ready
Messages are classified into one of the three types, which are indicated by a severity level.
Informational messages provide descriptive information concerning things such as a tools
progress, start and end times of the tool, output data characteristics, and much more. The
severity level of an informational message is indicated by a value of 0. Warning messages
are generated when a problem has occurred during execution that may affect the output.
Warnings are indicated with a severity level of 1 and don't normally stop a tool from running.
The last type of message is an error message, which is indicated with a numeric value of
2. These indicate fatal events that prevent a tool from running. Multiple messages may be
generated during the execution of a tool, and these are stored in a list. More information
about message severity levels is provided in the following image. In this recipe, you will
learn how to filter the messages generated by the GetMessages() function.

How to do it…
Filtering the messages returned by a tool is really quite simple. You simply provide the severity
level you'd like to return as a parameter to the GetMessages() function.

1. If necessary, open the c:\ArcpyBook\Ch12\ErrorHandling.py file in IDLE.

Error Handling and Troubleshooting

240

2. Alter the GetMessages() function so that you pass in a value of 2 as the
only parameter:
import arcpy
try:
 arcpy.env.workspace = "c:/ArcpyBook/data"
 arcpy.Buffer_analysis("Streams.shp","Streams_Buff.shp")
except:
 print arcpy.GetMessages(2)

3. Save and run the script to see the output:

Failed to execute. Parameters are not valid.

ERROR 000735: Distance [value or field]: Value is required

Failed to execute (Buffer).

How it works…
As I mentioned, the GetMessages() method can accept an integer argument of 0, 1, or 2.
Passing a value of 0 indicates that all messages should be returned, while passing a value
of 1 indicates that you wish to see warnings. In our case, we have passed a value of 2, which
indicates that we only want to see error messages. Therefore, you won't see any of the other
information messages, such as the start and end times of the script.

Testing for and responding to specific error
messages

All errors and warnings generate a specific error code. It is possible to check for specific error
codes in your scripts and perform some type of action based on these errors. This can make
your scripts even more versatile.

Getting ready…
All errors and warnings generated by a geoprocessing tool contain both a six digit code and
a description.Your script can test for specific error codes and respond accordingly.You can
get a listing of all the available error messages and codes in the ArcGIS Desktop help system
by going to Geoprocessing | Tool errors and warnings.This is illustrated in the following
screenshot.All errors will have a unique page that briefly describes the error by code number:

Chapter 12

241

How to do it…
Follow these steps to learn how to write a code that responds to specific error code generated
by the execution of a geoprocessing tool:

1. Open the ArcGIS Desktop help system by going to Start | Programs | ArcGIS |
ArcGIS for Desktop Help.

2. Go to Geoprocessing | Tool errors and warnings | Tool errors 1-10000 |Tool errors
and warnings: 701-800.

3. Select 000735: <value>: Value is required.This error indicates that a parameter
required by the tool has not been provided.You’ll recall from running this script that
we have not provided the buffer distance and that the error message generated, as a
result, contains the error code that we are viewing in the help system.In the following
code, you will find the full text of the error message.Notice the error code.
ERROR000735:Distance[valueorfield]:Valueisrequired

Error Handling and Troubleshooting

242

4. If necessary, open the c:\ArcpyBook\Ch12\ErrorHandling.py file in IDLE.

5. In your script, alter the except statement, so that it appears as follows:
except:
 print “Error found in Buffer tool \n”
errCode = arcpy.GetReturnCode(3)
 if str(errCode) in “735”:
 print “Distance value not provided \n”
 print “Running the buffer again with a default value \n”
defaultDistance = “100 Feet”
arcpy.Buffer_analysis(“Streams.shp”, “Streams_Buff”,
defaultDistance)
 print “Buffer complete”

6. Save and run the script.You should see various messages printed, as follows:

Error found in Buffer tool

Distance value not provided for buffer

Running the buffer again with a default distance value

Buffer complete

How it works…
What you’ve done in this code block is use the arcpy.GetReturnCode() function to return
the error code generated by the tool.Then, an if statement is used to test if the error code
contains the value 735, which is the code that indicates that a required parameter has not
been provided to the tool.You then provided a default value for the buffer distance and
called the Buffer tool again; providing the default buffer valuethis time.

Returning individual messages with
GetMessage()

While GetMessages() returns a list containing all messages from the last tool run, you can
also get individual messages from the string using GetMessage().

Getting ready
Up to this point, we have been returning all messages generated by the tool. However, you
can return individual messages to your user through the GetMessage() method, which
takes an integer as a parameter indicating the particular message you'd like to retrieve. Each
message generated by the tool is placed into a message list or array. We discussed list objects
earlier in the book, so you'll remember that this is just a collection of some type of object.

Chapter 12

243

Just as a reminder: lists are zero-based, meaning that the first item in the list is located at
position 0. For example, GetMessage(0) would return the first message in the list, while
GetMessage(1) would return the second message in the list. The first message will always
be the tool being executed along with any parameters. The second message returns the start
time of the script, while the last message returns the end time of the script.

How to do it...
1. If necessary, open the c:\ArcpyBook\Ch12\ErrorHandling.py file in IDLE.

2. Alter the except block as follows:
import arcpy
try:
 arcpy.env.workspace = "c:/ArcpyBook/data"
 arcpy.Buffer_analysis("Streams.shp","Streams_Buff.shp")
except:
 print arcpy.GetMessage(1)
 print arcpy.GetMessage(arcpy.GetMessageCount() – 1)

3. Save and run the script to see the output:

Start Time: Wed Nov 14 09:07:35 2012

Failed at Wed Nov 14 09:07:35 2012 (Elapsed Time: 0.00 seconds)

How it works...
We haven't covered the GetMessageCount() function yet. This function returns the number
of messages returned by the tool. Remember that our list of messages is zero-based, so we
have to subtract one from the GetMessageCount()function to arrive at the last message in
the list. Otherwise, we'd be attempting to access a message that does not exist. In this script,
we have accessed the start and end times of the script. The second message is always the
start time for the script, while the last message will always be the end time of the script. This
concept is illustrated as follows:

Message 0 - Executing: Buffer c:/ArcpyBook/data\Streams.shp c:/ArcpyBook/
data\Streams_Buff.shp # FULL ROUND NONE #

Message 1 - Start Time: Tue Nov 13 22:23:04 2012

Message 2 - Failed to execute. Parameters are not valid.

Message 3 - ERROR 000735: Distance [value or field]: Value is required

Message 4 - Failed to execute (Buffer).

Message 5 - Failed at Tue Nov 13 22:23:04 2012 (Elapsed Time: 0.00
seconds)

Error Handling and Troubleshooting

244

Total message count is 6, but the last message is number 5. This is because the count starts
with 0. This is why you need to subtract 1 as stated previously. In this case, the start and end
times are the same, because the script contains an error. However, it does illustrate how to
access the individual messages generated by the tool.

A
Automating Python

Scripts

In this chapter, we will cover the following recipes:

 f Running Python scripts from the command line

 f Using sys.argv[] to capture command-line input

 f Adding Python scripts to batch files

 f Scheduling batch files to run at prescribed times

Introduction
Python geoprocessing scripts can be executed either outside ArcGIS as a standalone script
or inside ArcGIS as a script tool. Both methods have their advantages and disadvantages.
Up to this point in the book, all our scripts have been run either inside ArcGIS as a script tool,
or from a Python development environment such as IDLE, or the Python Window in ArcGIS.
However, Python scripts can also be executed from the Windows operating system command
line. The command line is a window that you can use to type in commands rather than the
usual point-and-click approach provided by Windows. This method of running Python scripts is
useful for scheduling the execution of a script. There are a number of reasons why you might
want to schedule your scripts. Many geoprocessing scripts take a long time to fully execute
and need to be scheduled to run during non-working hours on a regular basis. Additionally,
some scripts need to be executed on a routine basis (every day, week, month, and so on), and
should be scheduled for efficiency. In this chapter, you will learn how to execute scripts from
the command line, place scripts inside batch files, and schedule the execution of scripts at
prescribed times. Please keep in mind that any scripts run from the command line will still
need access to an ArcGIS Desktop license in order to use the arcpy module.

Automating Python Scripts

246

Running Python scripts from the command
line

Up to this point in the book, all your Python scripts have been run as either script tools in
ArcGIS or from a Python development environment. The Windows command prompt provides
yet another way of executing your Python scripts. The command prompt is used primarily to
execute scripts that will be run as a part of a batch file and/or as scheduled tasks.

Getting ready
There are a couple of advantages to running Python geoprocessing scripts from the command
prompt. These scripts can be scheduled to batch process your data during off hours for more
efficient processing, and they are easier to debug due to the built-in Python error handling
and debugging capabilities.

In this recipe, you will learn how to use the Windows command prompt to execute a Python
script. You will need administrative rights to complete this recipe, so you may need to contact
your information technology support group to make this change.

How to do it…
Follow these steps to learn how to run a script from the Windows command prompt:

1. In Windows, go to Start | All Programs | Accessories | Command Prompt to display
a window similar to the following screenshot:

Appendix A

247

The window will display the current directory. Your directory will differ to some degree.
Let's change to the directory for this appendix.

2. Type cd c:\ArcpyBook\Appendix1.

3. Type dir to see a listing of the files and sub-directories. You should see only a single
Python file called ListFields.py:

Automating Python Scripts

248

4. You will want to make sure that the Python interpreter can be run from anywhere in
your directory structure. Go to Start | All Programs | Accessories | System Tools
| Control Panel.

5. Click on System and Security.

6. Click on System.

7. Click on Advanced system settings.

8. In the System Properties dialog box, select the Advanced tab and then
the Environment Variables button as shown in the following screenshot:

Appendix A

249

9. Find the Path system variable seen in the screenshot below and click on Edit.

Automating Python Scripts

250

10. Examine the entire text string for the directory c:\Python27\ArcGIS10.1.
If the text string isn't found, add it to the end. Make sure that you add a semi-colon
before adding the path. Now, when you type python in the command prompt, it
will look through each of the directories in the Path system variable, checking for
an executable called python.exe.

11. Click on OK to dismiss the Edit System Variable dialog box.

12. Click on OK to dismiss the Environment Variables dialog box.

13. Click on OK to dismiss the System Properties dialog box.

14. Return to the command prompt.

15. Type python ListFields.py. This will run the ListFields.py script.
After a brief delay, you should see the following output:

Appendix A

251

How it works…
The ListFields.py script provided for you in this recipe is a simple script that lists the
attribute fields for the Burglaries_2009.shp file. The workspace and shapefile name
are hardcoded in the script. Typing python followed by the name of the script, which
is ListFields.py in this case, triggered the execution of a script using the Python
interpreter. As I mentioned, the workspace and shapefile name were hardcoded in this
script. In the next recipe, you will learn how to pass in arguments to the script, so that
you can remove the hardcoding and make your script more flexible.

Using sys.argv[] to capture command-line
input

Instead of hardcoding your scripts with paths to specific datasets, you can make your scripts
more flexible by allowing them to accept input in the form of parameters from the command
prompt. These input parameters can be captured using Python's sys.argv[] object.

Getting ready
Python's sys.argv[] object allows you to capture input parameters from the command line
when a script is executed. An example is useful for illustrating how this works. Take a look at
the following screenshot:

Automating Python Scripts

252

Each word must be separated by a space. These words are stored in a zero-based list object
called sys.argv[]. With sys.argv[], the first item in the list, referenced by index 0, stores
the name of the script. In this case, it would be ListFields.py. Each successive word is
referenced by the next integer. Therefore, the first parameter (c:\ArcpyBook\data) will be
stored in sys.argv[1], and the second parameter (Burglaries.shp) will be stored in
sys.argv[2]. Each of the arguments in the sys.argv[] object can be accessed and used
inside your geoprocessing script. In this recipe, you're going to update the ListFields.py
script to accept input parameters from the command line.

How to do it...
Follow these steps to create a Python script that can accept input parameters from the
command prompt using sys.argv[]:

1. Open C:\ArcpyBook\Appendix1\ListFields.py in IDLE.

2. Import the sys module:
import arcpy, sys

3. Create a variable to hold the workspace that will be passed into the script:
wkspace = sys.argv[1]

4. Create a variable to hold the feature class that will be passed into the script:
fc = sys.argv[2]

5. Update the lines of code that set the workspace and call the ListFields() function:
arcpy.env.workspace = wkspace
fields = arcpy.ListFields(fc)

Your completed script should appear as follows:
import arcpy, sys
wkspace = sys.argv[1]
fc = sys.argv[2]
try:
 arcpy.env.workspace = wkspace
 fields = arcpy.ListFields(fc)
 for fld in fields:
 print fld.name
except:
 print arcpy.GetMessages()

6. Save the script.

7. If necessary, open the command prompt and navigate to c:\ArcpyBook\Appendix1.

Appendix A

253

8. On the command line, type the following and press on the Enter key:
python ListFields.py c:\ArcpyBook\data Burglaries_2009.shp

9. Once again you should see the output detailing the attribute fields for the
Burglaries_2009.shp file. The difference is that your script no longer
has a hardcoded workspace and feature class name. You now have a more
flexible script capable of listing the attribute fields for any feature class.

How it works...
The sys module contains a list of objects called argv[], which is used to store the input
parameters for the command-line execution of a Python script. The first item stored in
the list is always the name of the script. So, in this case, sys.argv[0] contains the word
ListFields.py. Two parameters are passed into the script, including the workspace and
a feature class. These are stored in sys.argv[1] and sys.argv[2] respectively. These
values are then assigned to variables and used in the script.

Adding Python scripts to batch files
Scheduling your Python scripts to run at prescribed times will require that you create a batch
file containing one or more scripts and/or operating system commands. These batch files can
then be added to the Windows Scheduler to run at a specific time interval.

Getting ready
Batch files are text files containing command-line sequences for running Python scripts or
performing operating system commands. They have a file extension of .bat, which Windows
recognizes as an executable file. Since batch files simply contain command-line sequences,
they can be written with any text editor, though it is recommended that you use a basic text
editor such as Notepad, so that you can avoid the inclusion of invisible special characters,
which are sometimes inserted by programs such as Microsoft Word. In this recipe, you will
create a simple batch file that navigates to the directory containing your ListFields.py
script and executes it.

How to do it...
Follow these steps to create a batch file:

1. Open a notepad.

2. Add the following lines of text to the file:
cd c:\ArcpyBook\Appendix1
python ListFields.py c:\ArcpyBook\data Burglaries_2009.shp

Automating Python Scripts

254

3. Save the file to your desktop as ListFields.bat. Make sure you change
the Save as Type drop-down list to All Files, or else you'll wind up with a file
called ListFields.bat.txt.

4. In Windows, navigate to your desktop and double-click on ListFields.bat
to execute the sequence of commands.

5. A command prompt will be displayed during execution. After the commands
have been executed, the command prompt will automatically close.

How it works...
Windows treats a batch file as an executable, so double-clicking on the file will automatically
execute the sequence of commands contained within the file in a new command prompt
window. All print statements will be written to the window. After the commands have been
executed, the command prompt will automatically close. In the event that you need to keep
track of the output, you can write the statements to an output log file.

There's more...
Batch files can contain variables, loops, comments, and conditional logic. This functionality
is beyond the scope of this recipe. However, if you'll be writing and running many scripts for
your organization, it's worthwhile to spend some time learning more about batch files. Batch
files have been around for a long time, so there is no shortage of information about these
files on the Web. For more information about batch files, please consult the Wikipedia page
for this topic.

Scheduling batch files to run at prescribed
times

Once created, your batch files can then be scheduled to run at prescribed times using the
Windows Scheduler.

Getting ready
Many geoprocessing scripts are time-intensive and best run after hours when they can
take full advantage of system resources and free up your time to concentrate on other
tasks. In this recipe, you will learn how to use the Windows Scheduler to schedule the
execution of your batch files.

http://en.wikipedia.org/wiki/Batch_file

Appendix A

255

How to do it...
Follow these steps to schedule a batch file with the Windows Scheduler:

1. Open the Windows Scheduler by going to Start | Programs | Accessories | System
Tools | Control Panel | Administrative Tools. Select Task Scheduler. The scheduler
should appear, as shown in the following screenshot:

2. Select the Action menu item and then Create Basic Task to display the Create
Basic Task Wizard dialog box, as shown in the next screenshot.

Automating Python Scripts

256

3. Give your task a name. In this case, we will call it List Fields from a Feature
Class. Click on Next:

Appendix A

257

4. Select a trigger for when the task should be executed. This can, and often will be, a
time-based trigger, but there can also be other types of triggers such as a user login
or computer start. In this case, let's just select Daily. Click on Next:

Automating Python Scripts

258

5. Select a start date/time as well as a recurrence interval. In the following screenshot,
I have selected the date as 12/3/2012, with time as 1:00:00 AM, and a recurrence
interval of 1 day. So, every day at 1:00 AM, this task will be executed. Click on Next:

Appendix A

259

6. Select Start a program as the action:

Automating Python Scripts

260

7. Browse to your script and add the parameters. Click on Next:

Appendix A

261

8. Click on Finish to add a task to the scheduler:

Automating Python Scripts

262

9. The tasks should now be displayed in the list of active tasks:

How it works...
The Windows Task Scheduler keeps track of all the active tasks and handles the execution
of these tasks when the prescribed trigger is fired. In this recipe, we have scheduled our task
to execute each day at 1:00 AM. At that time, the batch file we created will be triggered and
the arguments we specified when creating the task will be passed into the script. Using the
scheduler to automatically execute geoprocessing tasks after hours without the need for GIS
staff to interact with the scripts gives you more flexibility and increases your efficiency. You
might also want to consider logging the errors in your Python scripts to a log file, for more
information about specific problems.

B
Five Things Every GIS

Programmer Should
Know How to Do with

Python

In this chapter, we will cover the following recipes:

 f Reading data from a delimited text file

 f Sending e-mails

 f Retrieving files from an FTP server

 f Creating ZIP files

 f Reading XML files

Introduction
In this chapter, you will learn how to write scripts that perform general purpose tasks with
Python. Tasks, such as reading and writing delimited text files, sending e-mails, interacting
with FTP servers, creating .zip files, and reading and writing JSON and XML files. Every GIS
programmer should know how to write Python scripts that incorporate this functionality.

Five Things Every GIS Programmer Should Know to Write Scripts with Python

264

Reading data from a delimited text file
File handling with Python is a very important topic for GIS programmers. Text files are often used
as an interchange format for exchanging data between systems. They are simple, cross-platform,
and easy to process. Comma-and tab-delimited text files are among the most commonly used
formats for text files, so we'll take an extensive look at the Python tools available for processing
these files. A common task for GIS programmers is to read comma-delimited text files containing
x and y coordinates along with other attribute information. This information is then converted
into GIS data formats, such as shapefiles or geodatabases.

Getting ready
To use Python's built-in file processing functionality, you must first open the file. Once open,
data within the file is processed using functions provided by Python, and finally the file is
closed. Always remember to close the file when you're done.

In this recipe, you will learn how to open, read, process, and close a comma-delimited text file.

How to do it…
Follow these steps to create a Python script that reads a comma-delimited text file:

1. In your c:\ArcpyBook\data folder, you will find a file called N_America.
A2007275.txt. Open this file in a text editor. It should appear as follows:
18.102,-94.353,310.7,1.3,1.1,10/02/2007,0420,T,72

19.300,-89.925,313.6,1.1,1.0,10/02/2007,0420,T,82

19.310,-89.927,309.9,1.1,1.0,10/02/2007,0420,T,68

26.888,-101.421,307.3,2.7,1.6,10/02/2007,0425,T,53

26.879,-101.425,306.4,2.7,1.6,10/02/2007,0425,T,45

36.915,-97.132,342.4,1.0,1.0,10/02/2007,0425,T,100

This file contains wildfire incident data derived from a satellite sensor from a single
day in 2007. Each row contains latitude and longitude information for the fire along
with additional information, including the date and time, the satellite type, confidence
value, and others. In this recipe, you are going to pull out only the latitude, longitude,
and confidence value.

2. Open IDLE and create a file called c:\ArcpyBook\Appendix2\
ReadDelimitedTextFile.py.

3. Use the Python open() function to open the file for reading:
f = open("c:/ArcpyBook/data/N_America.A2007275.txt','r')

Appendix B

265

4. Read the content of the text file into a list:
lstFires = f.readlines()

5. Add a for loop to iterate all the rows that have been read into the lstFires variable:
for fire in lstFires:

6. Use the split() function to split the values into a list using a comma as the
delimiter. The list will be assigned to a variable called lstValues. Make sure
that you indent this line of code inside the for loop you just created:
lstValues = fire.split(",")

7. Using the index values that reference latitude, longitude, and confidence values,
create new variables:
latitude = float(lstValues[0])
longitude = float(lstValues[1])
confid = int(lstValues[8])

8. Print the values of each with the print statement:
print "The latitude is: " + str(latitude) + " The longitude is: "
+ str(longitude) + " The confidence value is: " + str(confid)

9. Close the file:
f.close()

10. The entire script should appear as follows:
f = open('c:/ArcpyBook/data/N_America.A2007275.txt','r')
lstFires = f.readlines()
for fire in lstFires:
 lstValues = fire.split(',')
 latitude = float(lstValues[0])
 longitude = float(lstValues[1])
 confid = int(lstValues[8])
 print "The latitude is: " + str(latitude) + " The longitude is:
" + str(longitude) + " The confidence value is: " + str(confid)
f.close()

11. Save and run the script. You should see the following output:
The latitude is: 18.102 The longitude is: -94.353 The confidence
value is: 72

The latitude is: 19.3 The longitude is: -89.925 The confidence
value is: 82

The latitude is: 19.31 The longitude is: -89.927 The confidence
value is: 68

Five Things Every GIS Programmer Should Know to Write Scripts with Python

266

The latitude is: 26.888 The longitude is: -101.421 The confidence
value is: 53

The latitude is: 26.879 The longitude is: -101.425 The confidence
value is: 45

The latitude is: 36.915 The longitude is: -97.132 The confidence
value is: 100

How it works…
Python's open() function creates a file object, which serves as a link to a file residing on
your computer. You must call the open() function on a file before reading or writing data
in a file. The first parameter for the open() function is a path to the file you'd like to open.
The second parameter of the open() function corresponds to a mode, which is typically read
(r), write (w), or append (a). A value of r indicates that you'd like to open the file for read-only
operations, while a value of w indicates you'd like to open the file for write operations. If the
file you open in write mode already exists, it will overwrite any existing data in the file, so be
careful using this mode. Append mode (a) will open a file for write operations, but instead of
overwriting any existing data, it will append data to the end of the file. So, in this recipe, we
have opened the N_America.A2007275.txt file in read-only mode.

The readlines() function then reads the entire contents of the file into a Python list, which
can then be iterated. This list is stored in a variable called lstFires. Each row in the text file
will be a unique value in the list. Since this function reads the entire file into a list, you need
to use this method with caution, as large files can cause significant performance problems.

Inside the for loop, which is used to loop through each of the values in lstFires, the
split() function is used to create a list object from a line of text that is delimited in some way.
Our file is comma-delimited, so we can use split(","). You can also split based on other
delimiters such as tabs, spaces, or any other delimiter. This new list object created by split()
is stored in a variable called lstValues. This variable contains each of the wildfire values. This
is illustrated in the following screenshot. You'll notice that latitude is located in the first position,
longitude is located in the second position, and so on. Lists are zero based:

Using the index values (which reference latitude, longitude, and confidence values), we create
new variables called latitude, longitude, and confid. Finally, we print each of the values.
A more robust geoprocessing script might write this information into a feature class using an
InsertCursor object.

Appendix B

267

There's more...
Just as is the case with reading files, there are a number of methods that you can use to
write data to a file. The write() function is probably the easiest to use. It takes a single
string argument and writes it to a file. The writelines() function can be used to write
the contents of a list structure to a file. Before writing data to a text file, you will need to
open the file in either a write or append mode.

Sending e-mails
There will be occasions when you may need to send an e-mail from a Python script. An example
might be an alert for the successful completion or error in a long-running geoprocessing
operation. On these and other occasions, sending an e-mail can be helpful.

Getting ready
Sending an e-mail through a Python script will require that you have access to a mail server.
This can be a public e-mail service, such as Yahoo, Gmail, or others. It can also use outgoing
mail servers configured with applications, such as Microsoft Outlook. In either case, you'll
need to know the host name and port of the e-mail server. The Python smtplib module
is used to create connections to the mail server and to send e-mails.

The Python email module contains a Message class that represents e-mail messages. Each
message contains both headers and a body. This class can't be used to send e-mails; it just
handles its object representation. In this recipe, you'll learn how to use the smtp class to
send e-mails containing an attachment through your script. The Message class can parse a
stream of characters or a file containing an e-mail using either the message_from_file()
or message_from_string() functions. Both will create a new Message object. The body
of the mail can be obtained by calling Message.getpayload().

We are using the Google Mail service for this exercise. If you
already have a Gmail account, then simply provide your username
and password as the values for these variables. If you don't have
a Gmail account, you'll need to create one or use a different mail
service to complete this exercise; Gmail accounts are free.

Five Things Every GIS Programmer Should Know to Write Scripts with Python

268

How to do it…
Follow these steps to create a script that can send emails:

1. Open IDLE and create a file called c:\ArcpyBook\Appendix2\SendEmail.py.

2. In order to send e-mails with attachments, you're going to need to import the
smtplib module along with the os module, and several classes from the
e-mail module. Add the following import statements to your script:
import smtplib
from email.MIMEMultipart import MIMEMultipart
from email.MIMEBase import MIMEBase
from email.MIMEText import MIMEText
from email import Encoders
import os

3. Create the following variables and assign your Gmail username and password as
the values. Do keep in mind that this method of e-mailing from your Python script
can invite problems, as it requires that you include your username and password:
gmail_user = "<username>"
gmail_pwd = "<password>"

4. Create a new Python function called mail(). This function will accept four
parameters: to, subject, text, and attach. Each of these parameters should
be self-explanatory. Create a new MIMEMultipart object and assign the
from, to, and subject keys. You can also attach the text of the e-mail to
this new msg object using MIMEMultipart.attach():
def mail(to, subject, text, attach):
 msg = MIMEMultipart()
 msg['From'] = gmail_user
 msg['To'] = to
 msg['Subject'] = subject

 msg.attach(MIMEText(text))

5. Attach the file to the e-mail:
 part = MIMEBase('application', 'octet-stream')
 part.set_payload(open(attach, 'rb').read())
 Encoders.encode_base64(part)
 part.add_header('Content-Disposition',
 'attachment; filename="%s"' % os.path.basename(attach))
 msg.attach(part)

Appendix B

269

6. Create a new SMTP object that references the Google Mail service, passes in
the username and password to connect to the mail services, sends the e-mail,
and closes the connection:
 mailServer = smtplib.SMTP("smtp.gmail.com", 587)
 mailServer.ehlo()
 mailServer.starttls()
 mailServer.ehlo()
 mailServer.login(gmail_user, gmail_pwd)
 mailServer.sendmail(gmail_user, to, msg.as_string())
 mailServer.close()

7. Call the mail() function, passing in the recipient of the e-mail, a subject for the
e-mail, the text of the e-mail, and the attachment:
 mail("<email to send to>",
 "Hello from python!",
 "This is an email sent with python",
 "c:/ArcpyBook/data/bc_pop1996.csv")

8. The entire script should appear as follows:
import smtplib
from email.MIMEMultipart import MIMEMultipart
from email.MIMEBase import MIMEBase
from email.MIMEText import MIMEText
from email import Encoders
import os

gmail_user = "<username>"
gmail_pwd = "<password>"

def mail(to, subject, text, attach):
 msg = MIMEMultipart()

 msg['From'] = gmail_user
 msg['To'] = to
 msg['Subject'] = subject

 msg.attach(MIMEText(text))

 part = MIMEBase('application', 'octet-stream')
 part.set_payload(open(attach, 'rb').read())
 Encoders.encode_base64(part)

Five Things Every GIS Programmer Should Know to Write Scripts with Python

270

 part.add_header('Content-Disposition',
 'attachment; filename="%s"' % os.path.basename(attach))
 msg.attach(part)

 mailServer = smtplib.SMTP("smtp.gmail.com", 587)
 mailServer.ehlo()
 mailServer.starttls()
 mailServer.ehlo()
 mailServer.login(gmail_user, gmail_pwd)
 mailServer.sendmail(gmail_user, to, msg.as_string())
 mailServer.close()

mail("<email to send to>",
 "Hello from python!",
 "This is an email sent with python",
 "bc_pop1996.csv")

9. Save and run the script. For testing, I used my personal Yahoo account as the
recipient. You'll notice that my inbox has a new message from my Gmail account;
also notice the attachment:

How it works…
The first parameter passed into the mail() function is the e-mail address that will receive
the e-mail. This can be any valid e-mail address, but you'll want to supply a mail account that
you can actually check, so that you can make sure your script runs correctly. The second
parameter is just the subject line of the e-mail. The third parameter is the text of the e-mail.
The final parameter is the name of a file that will be attached to the e-mail. Here, I've simply
defined that the bc_pop1996.csv file should be attached. You can use any file you have
access to, but you may want to just use this file for testing.

We then create a new MIMEMultipart object inside the mail() function, and assign
the from, to, and subject keys. You can also attach the text of the e-mail to this new msg
object using MIMEMultipart.attach(). The bc_pop1996.csv file is then attached to
the e-mail using a MIMEBase object and attached to the e-mail using msg.attach(part).

Appendix B

271

At this point, we've examined how a basic text e-mail can be sent. However, we want to send
a more complex e-mail message that contains text and an attachment. This requires the
use of MIME messages, which provides the functionality to handle multi-part e-mails. MIME
messages need boundaries between the multiple parts, along with extra headers to specify
the content being sent. The MIMEBase class is an abstract subclass of Message and enables
this type of an e-mail to be sent. Because it is an abstract class, you can't create actual
instances of this class. Instead, you use one of the subclasses, such as MIMEText. The last
step of the mail() function is to create a new SMTP object that references the Google Mail
service, passes in the username and password to connect to the mail services, sends the
e-mail, and closes the connection.

Retrieving files from an FTP server
Retrieving files from an FTP server for processing is a very common operation for GIS
programmers and can be automated with a Python script.

Getting ready
Connecting to an FTP server and downloading a file is accomplished through the ftplib
module. A connection to an FTP server is created through the FTP object, which accepts
a host, username, and password to create the connection. Once a connection has been
opened, you can then search for and download files.

In this recipe, you will connect to the National Interagency Fire Center Incident FTP site
and download a Google Earth format file for a wildfire in Alaska.

How to do it…
Follow these steps to create a script that connects to an FTP server and downloads a file:

1. Open IDLE and create a file called c:\ArcpyBook\Appendix2\ftp.py.

2. We'll be connecting to an FTP server at the NIFC. Visit their website at
http://ftpinfo.nifc.gov/ for more information.

3. Import the ftplib, os, and socket modules:
import ftplib
import os
import socket

4. Add the following variables that define the URL, directory, and filename:
HOST = 'ftp.nifc.gov'
DIRN = '/Incident_Specific_Data/ALASKA/Fire_
Perimeters/20090805_1500'
FILE = 'FirePerimeters_20090805_1500.kmz'

http://ftpinfo.nifc.gov/

Five Things Every GIS Programmer Should Know to Write Scripts with Python

272

5. Add the following code block to create a connection. If there is a connection error,
a message will be generated. If the connection was successful, a success message
will be printed:
try:
 f = ftplib.FTP(HOST)
except (socket.error, socket.gaierror), e:
 print 'ERROR: cannot reach "%s"' % HOST
print '*** Connected to host "%s"' % HOST

6. Add the following code block to anonymously log in to the server:
try:
 f.login()
except ftplib.error_perm:
 print 'ERROR: cannot login anonymously'
 f.quit()
print '*** Logged in as "anonymous"'

7. Add the following code block to change to the directory specified in our DIRN variable:
try:
 f.cwd(DIRN)
except ftplib.error_perm:
 print 'ERROR: cannot CD to "%s"' % DIRN
 f.quit()
print '*** Changed to "%s" folder' % DIRN

8. Use the FTP.retrbinary() function to retrieve the KMZ file:
try:
 f.retrbinary('RETR %s' % FILE,
 open(FILE, 'wb').write)
except ftplib.error_perm:
 print 'ERROR: cannot read file "%s"' % FILE
 os.unlink(FILE)
else:
 print '*** Downloaded "%s" to CWD' % FILE

9. Make sure you disconnect from the server:
f.quit()

10. The entire script should appear as follows:
import ftplib
import os
import socket

Appendix B

273

HOST = 'ftp.nifc.gov'
DIRN = '/Incident_Specific_Data/ALASKA/Fire_
Perimeters/20090805_1500'
FILE = 'FirePerimeters_20090805_1500.kmz'

try:
 f = ftplib.FTP(HOST)
except (socket.error, socket.gaierror), e:
 print 'ERROR: cannot reach "%s"' % HOST
print '*** Connected to host "%s"' % HOST

try:
 f.login()
except ftplib.error_perm:
 print 'ERROR: cannot login anonymously'
 f.quit()
print '*** Logged in as "anonymous"'

try:
 f.cwd(DIRN)
except ftplib.error_perm:
 print 'ERROR: cannot CD to "%s"' % DIRN
 f.quit()
print '*** Changed to "%s" folder' % DIRN

try:
 f.retrbinary('RETR %s' % FILE,
 open(FILE, 'wb').write)
except ftplib.error_perm:
 print 'ERROR: cannot read file "%s"' % FILE
 os.unlink(FILE)
else:
 print '*** Downloaded "%s" to CWD' % FILE
f.quit()

11. Save and run the script. If everything is successful, you should see the following output:
*** Connected to host "ftp.nifc.gov"

*** Logged in as "anonymous"

*** Changed to "/Incident_Specific_Data/ALASKA/Fire_
Perimeters/20090805_1500" folder

*** Downloaded "FirePerimeters_20090805_1500.kmz" to CWD

Five Things Every GIS Programmer Should Know to Write Scripts with Python

274

12. Check your c:\ArcpyBook\Appendix2 directory for the file. By default, FTP will
download files to the current working directory:

How it works…
To connect to an FTP server, you need to know the URL. You also need to know the directory and
filename for the file that will be downloaded. In this script, we have hardcoded this information,
so that you can focus on implementing the FTP-specific functionality. Using this information we
then created a connection to the NIFC FTP server. This is done through the ftplib.FTP()
function, which accepts a URL to the host.

Anonymous logins are accepted by the nifc.gov server, so we connect to the server in this
manner. Keep in mind that if a server does not accept anonymous connections, you'll need
to obtain a username/password. Once logged in, the script then changes directories from the
root of the FTP server to the path defined in the DIRN variable. This was accomplished with
the cwd(<path>) function. The kmz file was retrieved using the retrbinary() function.
Finally, you will want to close your connection to the FTP server when you're done. This is
done with the quit() method.

There's more…
There are a number of additional FTP-related methods that you can use to perform various
actions. Generally, these can be divided into directory-level operations and file-level operations.
Directory-level methods include the dir() method to obtain a list of files in a directory, mkd()
to create a new directory, pwd() to get the current working directory, and cwd() to change the
current directory.

The ftplib module also includes various methods for working with files. You can upload
and download files in binary or plain text format. The retrbinary() and storbinary()
methods are used to retrieve and store binary files, respectively. Plain text files can be
retrieved and stored using retrlines() and storlines().

There are several others methods on the FTP class that you should be aware of. Deleting a
file can be done with the delete() method, while renaming a file can be accomplished with
rename(). You can also send commands to the FTP server through the sendcmd() method.

Appendix B

275

Creating ZIP files
GIS often requires the use of large files that will be compressed into a .zip format for ease
of sharing. Python includes a module that you can use to decompress and compress files in
this format.

Getting ready
Zip is a common compression and archive format and is implemented in Python through the
zipfile module. The ZipFile class can be used to create, read, and write .zip files.
To create a new .zip file, simply provide the filename along with a mode such as w, which
indicates that you want to write data to the file. In the following code example, we are creating
a .zip file called datafile.zip. The second parameter, w, indicates that a new file will be
created. A new file will be created or an existing file with the same name will be truncated in
the write mode. An optional compression parameter can also be used when creating the file.
This value can be set to either ZIP_STORED or ZIP_DEFLATED:

zipfile.ZipFile('dataFile.zip', 'w',zipfile.ZIP_STORED)

In this exercise, you will use Python to create file, add files, and apply compression to a .zip.
You'll be archiving all the shapefiles located in the c:\ArcpyBook\data directory.

How to do it…
Follow these steps to learn how to create a script that build a .zip file:

1. Open IDLE and create a script called c:\ArcpyBook\Appendix2\
CreateZipfile.py.

2. Import the zipfile and os modules:
import os
import zipfile

3. Create a new .zip file called shapefiles.zip in write mode and add a
compression parameter:
zfile = zipfile.ZipFile("shapefiles.zip", "w", zipfile.ZIP_STORED)

4. Next, we'll use the os.listdir() function to create a list of files in the
data directory:
files = os.listdir("c:/ArcpyBook/data")

Five Things Every GIS Programmer Should Know to Write Scripts with Python

276

5. Loop through a list of all the files and write to the .zip file, if the file ends with shp,
dbf, or shx:
for f in files:
 if f.endswith("shp") or f.endswith("dbf") or f.endswith("shx"):
 zfile.write("C:/ArcpyBook/data/" + f)

6. Print out a list of all the files that were added to the zip archive. You can use the
ZipFile.namelist() function to create a list of files in the archive:
for f in zfile.namelist():
 print "Added %s" % f

7. Close the .zip archive:
zfile.close()

8. The entire script should appear as follows:
import os
import zipfile

#create the zip file
zfile = zipfile.ZipFile("shapefiles.zip", "w", zipfile.ZIP_STORED)
files = os.listdir("c:/ArcpyBook/data")

for f in files:
 if f.endswith("shp") or f.endswith("dbf") or f.endswith("shx"):
 zfile.write("C:/ArcpyBook/data/" + f)

#list files in the archive
for f in zfile.namelist():
 print "Added %s" % f

zfile.close()

9. Save and run the script. You should see the following output:
Added ArcpyBook/data/Burglaries_2009.dbf

Added ArcpyBook/data/Burglaries_2009.shp

Added ArcpyBook/data/Burglaries_2009.shx

Added ArcpyBook/data/Streams.dbf

Added ArcpyBook/data/Streams.shp

Added ArcpyBook/data/Streams.shx

Appendix B

277

10. In Windows Explorer, you should be able to see the output .zip file as shown
in the following screenshot. Note the size of the archive. This file was created
without compression:

11. Now, we're going to create a compressed version of the .zip file to see the difference.
Make the following changes to the line of code that creates the .zip file:
zfile = zipfile.ZipFile("shapefiles2.zip", "w", zipfile.ZIP_
DEFLATED)

12. Save and re-run the script.

13. Take a look at the size of the new shapefiles2.zip file that you just created.
Note the decreased size of the file due to compression:

How it works…
In this recipe, you created a new .zip file called shapefiles.zip in write mode. In the
first iteration of this script, you didn't compress the contents of the file. However, in the
second iteration, you did by using the DEFLATED parameter passed into the constructor
for the ZipFile object. The script then obtained a list of files in the data directory and
looped through each of the files. Each file that has an extension of .shp, .dbf, or .shx
is then written to the archive file using the write() function. Finally, the names of each
of the files written to the archive is printed to the screen.

There's more…
The contents of an existing file stored in a ZIP archive can be read using the read() method.
The file should first be opened in a read mode, and then you can call the read() method
passing in a parameter that represents the filename that should be read. The contents of
the file can then be printed to the screen, written to another file, or stored as a list or
dictionary variable.

Five Things Every GIS Programmer Should Know to Write Scripts with Python

278

Reading XML files
XML files were designed as a way to transport and store data. They are platform independent,
since the data is stored in a plain text file. Although similar to HTML, XML differs in that HTML is
designed for display purposes, whereas XML data is designed for data. XML files are sometimes
used as an interchange format for GIS data going between various software systems.

Getting ready
XML documents have a tree-like structure composed of a root element, child elements, and
element attributes. Elements are also called nodes. All XML files contain a root element. This
root element is the parent to all other elements or child nodes. The following code example
illustrates the structure of an XML document. Unlike HTML files, XML files are case sensitive:

<root>
 <child att="value">
 <subchild>.....</subchild>
 </child>
</root>

Python provides several programming modules that you can use to process XML files. The
module that you use should be determined by the module that is right for the job. Don't try
to force a single module to do everything. Each module has specific functions that they are
good at performing. In this recipe, you will learn how to read data from an XML file using the
nodes and element attributes that are a part of the document.

There are a number of ways that you can access nodes within an XML document. Perhaps,
the easiest way to do so is to find nodes by tag name and then walk the tree containing a list
of the child nodes. Before doing so, you'll want to parse the XML document with the minidom.
parse() method. Once parsed, you can then use the childNodes attribute to obtain a list
of all child nodes starting at the root of the tree. Finally, you can search the nodes by tag name
with the getElementsByTagName(tag) function, which accepts a tag name as an argument.
This will return a list of all child nodes associated with the tag.

You can also determine if a node contains an attribute by calling hasAttribute(name),
which will return a true/false value. Once you've determined that an attribute exists,
a call to getAttribute(name) will obtain the value for the attribute.

In this exercise, you will parse an XML file and pull out values associated with a particular
element (node) and attribute. We'll be loading an XML file containing wildfire data. In this
file, we'll be looking for the <fire> node and the address attribute from each of these
nodes. The addresses will be printed out.

Appendix B

279

How to do it…
1. Open IDLE and create a script called c:\ArcpyBook\Appendix2\

XMLAccessElementAttribute.py.

2. The WitchFireResidenceDestroyed.xml file will be used. The file is located
in your c:\ArcpyBook\Appendix2 folder. You can see a sample of its contents
as follows:
<fires>
 <fire address="11389 Pajaro Way" city="San Diego"
state="CA" zip="92127" country="USA" latitude="33.037187"
longitude="-117.082299" />
 <fire address="18157 Valladares Dr" city="San Diego"
state="CA" zip="92127" country="USA" latitude="33.039406"
longitude="-117.076344" />
 <fire address="11691 Agreste Pl" city="San Diego"
state="CA" zip="92127" country="USA" latitude="33.036575"
longitude="-117.077702" />
 <fire address="18055 Polvera Way" city="San Diego"
state="CA" zip="92128" country="USA" latitude="33.044726"
longitude="-117.057649" />
</fires>

3. Import minidom from xml.dom:
from xml.dom import minidom

4. Parse the XML file:
xmldoc = minidom.parse("WitchFireResidenceDestroyed.xml")

5. Generate a list of nodes from the XML file:
childNodes = xmldoc.childNodes

6. Generate a list of all the <fire> nodes:
eList = childNodes[0].getElementsByTagName("fire")

7. Loop through the list of elements, test for the existence of the address attribute,
and print the value of the attribute if it exists:
for e in eList:
 if e.hasAttribute("address"):
 print e.getAttribute("address")

Five Things Every GIS Programmer Should Know to Write Scripts with Python

280

8. Save and run the script. You should see the following output:
11389 Pajaro Way

18157 Valladares Dr

11691 Agreste Pl

18055 Polvera Way

18829 Bernardo Trails Dr

18189 Chretien Ct

17837 Corazon Pl

18187 Valladares Dr

18658 Locksley St

18560 Lancashire Way

How it works…
Loading an XML document into your script is probably the most basic thing you can do with
XML files. You can use the xml.dom module to do this through the use of the minidom
object. The minidom object has a method called parse(), which accepts a path to
an XML document and creates a document object model (DOM) tree object from the
WitchFireResidenceDestroyed.xml file.

The childNodes property of the DOM tree generates a list of all nodes in the XML file. You can
then access each of the nodes using the getElementsByTagName() method. The final step is
to loop through each of the <fire> nodes contained within the eList variable. For each node,
we then check for the address attribute with the hasAttribute() method, and if it exists we
call the getAttribute() function and print the address to the screen.

There's more…
There will be times when you will need to search an XML document for a specific text string.
This requires the use of the xml.parsers.expat module. You'll need to define a search
class derived from the basic expat class and then create an object from this class. Once
created, you can call the parse() method on the search object to search for data. Finally,
you can then search the nodes by tag name with the getElementsByTagName(tag)
function, which accepts a tag name as an argument. This will return a list of all child nodes
associated with the tag.

Index
Symbols
.esriaddin file 224
+ operator 15
== operator 16
.py file extension 9

A
AddFieldDelimiters() function 149
add-in

about 209
installing 223-225
testing 225-227

AddLayer() function 59, 61
AddLayerToGroup() function 61
ADD_TO_SELECTION method 154
Analysis Tools toolbox 38
append() method 19
append mode 266
ArcCatalog 119
ArcEditor 110
ArcGIS

about 10, 47, 89
geoprocessing 30

ArcGIS 10.0 8
ArcGIS Desktop 8, 35, 109
ArcGIS Desktop help system

about 39
using 40, 41
working 41, 42

ArcGIS geoprocessing scripts 33
ArcGIS Python window

about 30
using 30-32

arcgis scripting module 33
ArcInfo 110
ArcMap 144
ArcMap zoom and pan tools 37
ArcPy

about 33
accessing, with Python 32-34
working 35

arcpy.da module 44, 166
arcpy Data Access module 166
arcpy.ga module 44
arcpy.GetReturnCode() function 242
arcpy.mappingListLayers function 45
arcpy.mapping module 44, 47, 89
arcpy.mapping package 88
ArcPy modules

accessing, with Python 44, 45
Data Access module 44
Geostatistical module 44
Mapping module 44
Network Analyst module 44
Spatial Analyst module 44
Time module 44

arcpy.na module 44
ArcPy Python site package 29
arcpy.sa module 44
arcpy.time module 44
ArcToolbox 35, 125
ArcView 110
attribute queries

about 143
combining, with spatial queries 161-163

attribute query syntax
constructing 144-149

auto-arrange feature 61

282

B
batch files

scheduling, with Windows Scheduler 255-
262

scripts, adding to 253, 254
break statement 23
broken data sources 74
broken data sources, finding

in layer files 75, 76
in layer files 74
in map document 74-76
in map documents 85-88
MapDocument.findAndReplaceWorkspace-

Paths() method used 77, 78
MapDocument.replaceWorkspaces() method

used 79-81
buffer_distance_or_field parameter 42
Buffer tool 36, 242
button add-in

about 213
creating, steps 213-223

C
childNodes attribute 278
classes 20
CLEAR_SELECTION method 155
close() method 26
code

commenting 11
ComboBox add-in 232
comma-delimited text file

processing 264-266
command-line input

capturing, sys.argv[] object used 251-253
comments 11
compound statements 22
config.xml file 223
contains() method 21
continue statement 23
crosses() method 21
CURRENT keyword 48, 49
cursor performance

improving, with geometry tokens 172-174

cursors
overview 166

cwd() method 274

D
data

reading, from delimited text files 264-266
storing, variables used 42

Data Access module 44
data frame

accessing 51, 52
DataFrame class 56, 98
datatypes

about 14, 15
dictionaries 19, 20
lists 18, 19
numbers 17, 18
strings 15
tuples 19

data view 90
deactivate() function 228
decision support statements 22
default Python error message

exploring 234, 235
delete() method 274
deleteRow() method 168, 184
delimited text files

data, reading from 264-266
Describe() function

used, for returning descriptive information of
feature class 201-204

used, for returning descriptive information of
image 204-206

used, for returning workspace information
206, 207

descriptive information, of feature class
returning, Describe() function used 201-204

descriptive information, of image
returning, Describe() function used 204-206

dictionaries 19, 20
dir() method 274
disjoint() method 21
disk

map documents, referencing on 50

283

document object model (DOM) 280
dot notation 21
dynamic typing 14

E
edit session

rows, inserting inside 186-190
rows, updating inside 186-190

email module 267
e-mails

sending, through Python script 267-271
end of file (EOF) marker 26
environment variables

setting 122, 123
equals() method 21
error messages

about 239
responding to 240-242
testing for 240-242

Esri 150, 166, 210
exception handling 235-237
ExportToBMP() function 105
ExportToGIF() function 105
ExportToJPEG() function 105, 106
ExportToPDF() function 103, 105, 106
Extent class 20, 21
extent property 56

F
feature class

geometry, reading from 190-192
list of fields, getting in 198-200

feature layers
about 150
creating 150-153

features
retrieving, with SearchCursor 168-170
selecting, with Select by Location tool 157-

161
selecting, with Select Layer by Attribute tool

154-156
file handling 264
File I/O 26, 28
files

retrieving, from FTP server 271-274

findAndReplaceWorkspacePath() method 85
findAndReplaceWorkspacePaths() method 77
for loop 22
ftplib module 271, 274
FTP server

files, retrieving from 271-274
fundamentals, Python

built-in datatypes 15
classes 20
code, commenting 11
File I/O 26, 28
modules, importing 12
objects 20, 21
statement 21
variables 12-15

G
Generate Random Points tool 228
geodatabases 264
geometry

reading, from feature class 190-192
geometry tokens

about 172
used, for improving cursor performance 172-

174
geoprocessing framework 29
geoprocessing script

about 10
map document, referencing from 48, 49
tools, executing from 35

geoprocessing tool
about 125
Buffer tool 36
creating 125-141
executing, from script 35-37, 117-119
searching 110-114
working 38, 39

geoprocessing workflows 39
Geostatistical module 44
getAttribute() function 280
getElementsByTagName() method 280
getElementsByTagName(tag) function 278
GetMessage() function

used, for returning individual messages 242,
244

284

GetMessages() function
about 237
used, for retrieving tool messages 237, 238

GetParameterAsText() function 129, 133
GIS operations 143
Gmail 267
GraphicElement object 92, 98

H
hasAttribute() method 280
HTML 278

I
IDLE

about 8
scripts, executing from 10, 11
using, for Python script development 8

if/elif/else statement 22
illegal variable

examples 13
image file

map, exporting to 105, 106
import statement 12
indexing 16
individual layer

fixing, replaceDataSource() method used 82-
85

individual messages
returning, with GetMessage() function 242,

244
informational messages 239
InsertCursor() function 166, 168
InsertCursor object

about 168, 266
used, for inserting rows 175-180

InsertLayer() function 61, 63, 64
insert() method 19
insertRow() method 168, 175, 177
installation, add-in 223-225
installation, Python Add-in wizard 210-213
instance 49
Integrated DeveLopment Environment. See

IDLE

K
keys() method 20
Komodo 30

L
layer files

broken data sources, finding in 74-76
layers

adding, to map document 59-61
inserting, into map documents 61-63
properties, updating 66-71

layer symbology
updating, in map document 64-66

layout elements
properties, modifying 98-100
restricting 97, 98
unique name, assigning to 92-96

layout view 90
legal variable

examples 13
LegendElement 92, 98
Legend object 100
ListBoomarks() function 53
ListBrokenDataSources() function 73, 74, 76,

88
ListDataFrames() function 51-53, 55, 61
ListFeatureClasses() function 194-196, 200
ListFields() function 43, 199, 200, 252
ListFields.py script 251
ListIndexes() function 199
ListLayers() function 51-54, 63
ListLayoutElements() function

about 91, 92, 96, 97
layout elements, restricting 97, 98

ListLayoutElements() method 99
list of feature classes

getting, in workspace 194, 195
restricting, returned with feature type 197,

198
restricting, returned with wildcard 196, 197

list of fields
getting, in feature class 198-200
getting, in table 198-200

285

list of layers
getting, in map documents 52, 53
restricting 54, 55

list of, layout elements
creating 90-92

list of tables
obtaining 58, 59

ListPrinterNames() function
about 101
used, for listing printers 101

lists 18, 19
ListTables() function 196
ListTablesViews() function 51
ListTableViews() function 53, 58, 59
looping statements 23
lstValues variable 266

M
mail() function 268, 269
makeaddin.py file 223
Make Feature Layer tool

about 151
syntax 151
working 152, 153

Make Table View tool
about 151
syntax 151
working 152, 153

map
exporting, to image file 105, 106
exporting, to PDF file 103-105
printing, PrintMap() function used 102, 103

map book
creating, with PDFDocumentCreate() function

106, 108
creating, with PDFDocumentOpen() function

106, 108
map document

broken data sources, finding in 74-76
layers, adding to 59-61
layers, inserting into 61-63
layer symbology, updating 64-66
list of layers, getting 52, 53
referencing, from geoprocessing script 48, 49

MapDocument class 49
MapDocument.findAndReplaceWorkspace-

Paths() method
about 76
used, for finding broken data sources 77, 78

MapDocument() function 48, 50
MapDocument.replaceWorkspaces() method

used, for finding broken data sources 79-81
map documents

broken data sources, finding 85-88
referencing, on disk 50

map extent
modifying 56-58

MapSurroundElement 92, 99
Math module 12, 18
Message class 267
message_from_file() function 267
message_from_string() function 267
mkd() method 274
modules

about 44
importing 12

MoveLayer() function 64
multiuser_mode parameter 189

N
Network Analyst module 44
NEW_SELECTION method 154
next() method 167
nodes 278
numbers 17, 18

O
objects 20, 21, 49
onCircle() function 228
onLine() function 228
onRectangle() event 232
onRectangle() function 228, 230, 232
open() function 26, 266
os.path.splitext() method 88
os.walk() method 88
output, of tool

using, as input to another tool 120, 121
overlaps() method 21

286

P
PDF 103
PDFDocument class 108
PDFDocumentCreate() function

about 107, 108
used, for creating map book 106-108

PDFDocumentOpen() function
about 107, 108
used, for creating map book 106-108

PDF file
map, exporting to 103-105

PictureElement 92, 99
pop() method 19
printers

listing, ListPrinterNames() function used 101
PrintMap() function

about 101
used, for printing maps 102, 103

print statement 11
properties

modifying, of layout elements 98-100
updating, for layers 66-71

pwd() method 274
Python

about 7, 8
ArcPy, accessing with 32, 34
default error message, exploring 234, 235
exception handling 235-237
fundamentals 11
scripts, editing 9, 10

Python 2.6 8
Python Add-in wizard

about 210
downloading 210-213
installing 210-213

Python IDLE editor 30
Python script

emails, sending through 267-271
Python script development

IDLE, using for 8
Python script window 8
Python shell window 8
PythonWin 10, 30

Q
queries 143
quit() method 274

R
readline() method 26
readlines() method 26, 266
read() method 26, 277
records

filtering, with where clause 170-172
REMOVE_FROM_SELECTION method 155
remove() method 19
rename() method 274
replaceDataSource() method

used, for fixing individual layer 82-85
used, for fixing table objects 82-85

reset() method 167
retrbinary() function 274
retrlines() method 274
reverse() method 19
R module 12
root element 278
rows

deleting, UpdateCursor used 184, 186
inserting, inside edit session 186-190
inserting, with InsertCursor object 175-180
selecting, with Select Layer by Attribute tool

154-156
updating, inside edit session 186-190
updating, UpdateCursor used 180-184

S
scripts

adding, to batch files 253, 254
editing 9, 10
executing, from IDLE 10, 11
geoprocessing tools, executing from 117-119
running, from Windows command prompt

246-251
SearchCursor

used, for retrieving features 168-170
SearchCursor() function 166, 167, 169

287

SearchCursor object 167, 171
Select by Attributes tool

about 144
syntax 155

Select by Location tool
about 157
used, for combining spatial and attribute

query 161-163
used, for selecting features 157-161

Select Layer by Attribute tool
used, for selecting features 154-156
used, for selecting rows 154-156

sendcmd() method 274
severity level

tool messages, filtering by 238-240
shapefiles 264
SHAPE@ token 172
slicing 16 18
smtplib module 267
sorted() function 170
sort() method 19
Spatial Analyst module 44
spatial queries

about 143
combining, with attribute queries 161-163

spatialReference property 20
split() function 27, 177, 265, 266
startEditing() method 189
statement indentation 22
statements

about 21
decision support statements 22
looping statements 23
try statement 23, 24
with statement 25

storbinary() method 274
storlines() method 274
string manipulation functions 17
strings

about 15
manipulating 15-17

SUBSET_SELECTION method 155
SWITCH_SELECTION method 155

sys.argv[] object
about 251
used, for capturing command-line input 251-

253

T
table

list of fields, getting in 198-200
table objects

fixing, with replaceDataSource() method 82-
85

table views
about 150
creating 150-153

text element 90
TextElement 92, 99
text files 264
Time module 44
title property 100
tool add-in

about 227
creating 228-232

toolbox alias
retrieving 114-116

tool chaining 120, 121
tool messages

examining 122, 123
filtering, by severity level 238-240
retrieving, with GetMessages() function 237,

238
touches() method 21
try/except/else statement 24, 235
try/except statement 235
try/finally statement 24
try statement 23, 24
tuples 19

U
unique name

assigning, to layout elements 92-96
UpdateCursor

used, for deleting rows 184, 186
used, for updating rows 180-184

288

UpdateCursor() function 166, 168, 180
UpdateCursor object 168, 180
UpdateLayer() function 64-66

V
variables

about 12-15
naming conventions 12, 13
used, for storing data 42, 44

W
warning messages 239
where clause

about 154, 169
used, for filtering records 170-172

while loop 22, 23
wildcard argument 194
Windows command prompt

scripts, running from 246-251
Windows Scheduler

used, for scheduling batch files 255-262
Wingware 10, 30
within() method 21
with statement 25
with_undo parameter 189
workspace

about 77
list of feature classes, getting in 194, 195

workspace information
returning, with Describe() function 206, 207

workspaceType property 208
write() function 28, 267, 277
writelines() function 28, 267

X
XMax property 20
XMin property 20
XML 278
XML files

about 278
reading 278, 279

Y
Yahoo 267
YMax property 20
YMin property 20

Z
Zip 275
ZIP files

about 275
creating 275-277

Thank you for buying
Programming ArcGIS 10.1
with Python Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Python Geospatial
Development
ISBN: 978-1-849511-54-4 Paperback: 508 pages

Build a complete and sophisticated mapping application
from scratch using Python tools for GIS development

1. Build applications for GIS development using
Python

2. Analyze and visualize Geo-Spatial data

3. Comprehensive coverage of key GIS concepts

4. Recommended best practices for storing spatial
data in a database

OpenLayers Cookbook
ISBN: 978-1-849517-84-3 Paperback: 300 pages

60 recipes to create GIS web applications with the open
source JavaScript library

1. Understand the main concepts about maps,
layers, controls, protocols, events etc

2. Learn about the important tile providers and
WMS servers

3. Packed with code examples and screenshots
for practical, easy learning

Please check www.PacktPub.com for information on our titles

OpenLayers 2.10 Beginner's
Guide
ISBN: 978-1-849514-12-5 Paperback: 372 pages

Create, optimize, and deploy stunning cross-browser
web maps with the OpenLayers JavaScript web-mapping
library

1. Learn how to use OpenLayers through explanation
and example

2. Create dynamic web map mashups using Google
Maps and other third-party APIs

3. Customize your map's functionality and
appearance

OpenStreetMap
ISBN: 978-1-847197-50-4 Paperback: 252 pages

Be your own Cartographer

1. Collect data for the area you want to map with
this OpenStreetMap book and eBook

2. Create your own custom maps to print or use
online following our proven tutorials

3. Collaborate with other OpenStreetMap
contributors to improve the map data

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Fundamentals of the Python Language for ArcGIS
	Using IDLE for Python script development
	Python language fundamentals
	Summary

	Chapter 2: Writing Basic Geoprocessing Scripts with ArcPy
	Introduction
	Using the ArcGIS Python window
	Accessing ArcPy with Python
	Executing tools from a script
	Using ArcGIS Desktop help
	Using variables to store data
	Accessing ArcPy modules with Python

	Chapter 3: Managing Map Documents and Layers
	Introduction
	Referencing the current map document
	Referencing map documents on a disk
	Accessing a data frame
	Getting a list of layers in a map document
	Restricting the list of layers
	Changing the map extent
	Getting a list of tables
	Adding layers to a map document
	Inserting layers into a map document
	Updating layer symbology
	Updating layer properties

	Chapter 4: Finding and Fixing Broken Data Links
	Introduction
	Finding broken data sources in your map document and layer files
	Fixing broken data sources with MapDocument.findAndReplaceWorkspacePaths()
	Fixing broken data sources with MapDocument.replaceWorkspaces()
	Fixing individual Layer and Table objects with replaceDataSource()
	Finding all broken data sources in all map documents in a folder

	Chapter 5: Automating Map Production and Printing
	Introduction
	Creating a list of layout elements
	Assigning a unique name to layout elements
	Restricting the layout elements returned by ListLayoutElements()
	Updating layout element properties
	Getting a list of available printers
	Printing maps with PrintMap()
	Exporting a map to a PDF file
	Exporting a map to an image file
	Creating a map book with
	PDFDocumentCreate() and PDFDocumentOpen()

	Chapter 6: Executing Geoprocessing Tools from Scripts
	Introduction
	Finding geoprocessing tools
	Retrieving a toolbox alias
	Executing geoprocessing tools from a script
	Using the output of a tool as an input to another tool
	Setting environment variables and examining tool messages

	Chapter 7: Creating Custom Geoprocessing Tools
	Introduction
	Creating a custom geoprocessing tool

	Chapter 8: Querying and Selecting Data
	Introduction
	Constructing proper attribute query syntax
	Creating feature layers and table views
	Selecting features and rows with the Select Layer by Attribute tool
	Selecting features with the Select by Location tool
	Combining a spatial and attribute query with the Select by Location tool

	Chapter 9: Using the Arcpy Data Access Module to Select, Insert, and Update Geographic Data and Tables
	Introduction
	Retrieving features from a feature class with a SearchCursor
	Filtering records with a where clause
	Improving cursor performance with geometry tokens
	Inserting rows with InsertCursor
	Updating rows with an UpdateCursor
	Deleting rows with an UpdateCursor
	Inserting and updating rows inside an edit session
	Reading geometry from a feature class

	Chapter 10: Listing and Describing GIS Data
	Introduction
	Getting a list of feature classes in a workspace
	Restricting the list of feature classes returned with a wildcard
	Restricting the list of feature classes returned with a feature type.
	Getting a list of fields in a feature class or table
	Using the Describe() function to return descriptive information about a feature class
	Using the Describe() function to return descriptive information about an image
	Returning workspace information with the Describe() function

	Chapter 11: Customizing the ArcGIS Interface with Add-Ins
	Introduction
	Downloading and installing the Python Add-In wizard
	Creating a button add-in
	Installing and testing an add-in
	Creating a tool add-in

	Chapter 12: Error Handling and Troubleshooting
	Introduction
	Exploring the default Python error message
	Adding Python exception handling structures (try/except/finally)
	Retrieving tool messages with GetMessages()
	Filtering tool messages by severity level
	Testing for and responding to specific error messages
	Returning individual messages with GetMessage()

	Appendix A: Automating Python Scripts
	Introduction
	Running Python scripts from the command line
	Using sys.argv[] to capture command-line input
	Adding Python scripts to batch files
	Scheduling batch files to run at prescribed times

	Appendix B: Five Things Every GIS Programmer Should Know to Write Scripts with Python
	Introduction
	Reading data from a delimited text file
	Sending e-mails
	Retrieving files from an FTP server
	Creating ZIP files
	Reading XML files

	Index

