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Abstract: Large-scale models are generally associated with large spatial modelling units, for example,
counties or super grids (several to dozens of km?). Few applied urban models can achieve a
large spatial coverage with irregular spatial units due to data availability and computation load.
The framework of automatic identification and characterization of blocks developed by Liu and
Long (2016) makes such an ideal model possible by establishing the existing urban blocks using road
networks and points of interest for very large areas (e.g., a country or a continent). In this study, we
develop a mega-vector-blocks cellular automata model (MVB-CA) to simulate urban expansion at
the block level for 654 Chinese cities. The existing urban blocks in 2012 were used for initiating the
MYVB-CA and are generated using multi-levelled road networks and ubiquitous points of interest.
We then simulate block-based urban expansion of all the cities from 2012 to 2017. The national
spatial development strategies of China are discussed extensively by academia and policy makers,
while the baseline scenario and other simulated urban expansion scenarios have been tested and
compared horizontally. As one of the first block-based urban expansion models at a national scale, its
academic contributions, practical applications, and potential biases are also discussed in this paper.
The developed MVB-CA using general approaches is also applicable for other counties.

Keywords: urban expansion simulation; vector cellular automata; applied urban modelling; land
block; MVB-CA

1. Introduction

This study develops a vector cellular automata model for simulating urban expansion at the
block level for all Chinese cities. Most urban expansion models strike a balance between large
spatial coverage and local details. Our model makes some progress in simulating a large spatial
extent (the whole China) with irregular spatial units at the block level. (Parcels in China correspond
to “blocks” in Western countries such as the USA. Since Chinese cities (especially new built parts)
are featured with large parcels, the parcel size in our study is larger than the studies in Western
countries [1,2].)

Since the establishment of the Reform and Opening up Policy, China’s rapid urbanization has
been exerting a far-reaching influence on the evolution of human society throughout the world [3,4].
The total urban population in China has increased from 172 million to 712 million from 1978 to 2012.
The number of the reported cities at all levels reached 656 in 2012, and this number has tripled since
1978 [5]. Meanwhile, China is also experiencing an unprecedented active stage of urban expansion.
By the end of 2012, urban land area in China had reached 45,361 km?2, an increase of 608.6% compared
to 1983. Consequently, such an extraordinarily expansion of these cities has put a great pressure
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on natural resources and ecological environments [6]. Under such a social-economic background,
Chinese urban expansion has attracted extensive attention internationally and locally. These efforts
have aimed at identifying urban spatial morphology and growth boundaries [7,8], monitoring
temporal-spatial process and pattern [9-12], detecting driving forces and mechanisms [13,14],
simulating temporal-spatial process [15], analyzing future scenarios [15], and assessing ecological and
environmental impacts [16]. In total, many efforts have been made in China’s urban expansion research
spanning different spatial scales, but a few long-term limitations still exist. A great number of studies
focused on describing the temporal-spatial patterns, especially at national and regional scales, while
temporal-spatial simulation and analysis of future scenarios received much less attention. Moreover,
several studies explored simulation methods and analysed the impending scenarios generally based
on a micro-level or a mid-level scale but failed to meet the needs of urban dynamic spatial modelling
at large scales.

In this paper, a mega-vector-blocks cellular automata model (MVB-CA) using open data and
existing CA model strategies is developed for simulating urban expansion at the block level for all 654
Chinese cities. It enables future upgrading to address inter-city connection and interaction. We will
not discuss more on the computation load which is not heavy as we previously expect. We highlight
its empirical application in Chinese city system, while other studies in China focus on one city or
one region.

This paper is structured as follows. The next Section presents a literature. Section 3 describes
the datasets used in this paper. The methods and MVB-CA models are introduced in Section 4.
We compare the generated blocks and their attributes with existing data sources. Section 5 summarizes
the major findings and results. Finally, Sections 6 and 7 draw a discussion and present some concluding
remarks, respectively.

2. Literature Review

A better understanding of urban expansion prediction is essential for effective policy-making.
Several robust approaches have been developed for simulating urban expansion dynamically, including
cellular automata (CA), agent-based modelling (ABM), CLUE or CLUE-S (Conversion of Land Use and
its Effects), artificial neural networks (ANN), and system dynamics (SD). The CA method, sometimes
applied in conjunction with the other approaches, has become a well-established tool for modelling
urban expansion because of its ability to simulate dynamic spatial processes from a bottom-up
perspective [17]. It has been applied to several studies of Chinese city regions such as Beijing [18],
Northern China [19], Guangzhou and the Pearl River Delta [20,21], and the Beijing-Tianjin-Tangshan
metropolitan area [15]. In the CA models mentioned above, geographic space was typically represented
as a grid of regular cells (ranging from 50 m to 1 km in Chinese cases) and the neighbourhood was
defined as an assembly of adjacent cells. Recent studies have demonstrated that such raster-based CA
models are sensitive to the modifiable units used in the models, while we admit some vector-based CA
models are not able to completely avoid such issue. For instance, Chen and Mynett (2003) investigated
the effects of cell size and neighbourhood configuration in a prey-predator CA model and observed
that they affected both the resulting spatial patterns and the system stability [22]. Jantz and Goetz
(2005) examined the results of the SLEUTH model in response to different cell sizes and indicated that
the cell size at which the land use data was represented could influence the quantification of land use
patterns and descriptive power of the model [23]. Therefore, although the grid-based CA model has
proven to be an efficient method to simulate dynamic spatial processes, it is necessary to improve the
traditional raster-based method via novel techniques.
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Some researchers have begun to use vector or irregular cells in CA models rather than the
traditional cells to avoid the drawbacks mentioned above. Recently, the studies of vector-based CA
have gained significant attention from academia. O’Sullivan (2001) combined CA and graph theory
to generate sets of neighbourhood-scale irregular cells [24]. Irregular cells have also been employed
to represent real world entities. For instance, Torrens and Benenson (2005) proposed the geographic
automata system (GAS) combining characteristics of both CA and multi-agent models with the aim
at incorporating irregular vector objects as automata to represent real-world entities such as roads,
buildings, and parks [25]. Stevens and Dragicevi¢ [1] developed iCity, in which an urban area was
partitioned based on cadastral information into discrete land use units that were represented as a
collection of polygons. We also notice Jjumba and Dragicevi¢ [26] as its continuing study, which
introduce agent-based simulation into the existing iCity. Shen and Kawakami [27] developed a
geo-simulation model using a vector-based CA to visualize land use patterns in urban partitions. Pinto
and Antunes [28] developed an irregular CA based on census blocks to determine the land use demand
under the considerations of the dynamics of population and employment densities over time. In the
entity-based CA model presented by Menard [29] and Moreno et al. [30], the shape and size of each
object could also change and a dynamic neighbourhood could be semantically implemented. In short,
irregular polygons like lots, parcels and blocks provide a good representation of the real world, while
raster cells do not directly corresponding to actual geographical entities (irregular polygons such as
Voronoi polygons fail to correspond to spatial entities in the real world).

Existing large-scale urban expansion models rarely use vector polygons, especially for the
small-scale blocks used as cells in CA. Simulating urban expansion for a large urban extent with
irregular spatial units is promising for the following reasons. (1) Blocks, as clear behavioural units,
would be more appealing to local decision makers and citizens since each block has a boundary
connected with local images and knowledge. (2) Land use regulations could be distributed to blocks
directly, and each city would have access to the simulation results. This would benefit those cities
with no financial or intelligent stock supervising or being aware of future developments through our
model, since not every city has its capacity to develop its own urban expansion model. (3) Block-level
simulation results could be compared at the city level so that some intra-city phenomena could be
observed. (4) Such a model enables integrating spatial interaction analysis (flows and networks) in the
future. We also note that the aforementioned points 3 and 4 also apply to raster CA based large-scale
urban expansion models as well.

However, block-level urban expansion models for a large area have rarely been studied due to the
parcel/block data availability and computation limitations. Data limitation is a great concern in China
compared to other developed countries. For example, the best available block map for China’s capital
Beijing, one of the most technologically advanced and rapidly developing cities in the erstwhile Third
World, dates back to 2010 [31]. This map cannot provide an accurate reflection given the city’s rapid
expansion. In addition, collecting block data for medium and small sized cities in China is constrained
by poorly developed digital infrastructures. In addition to the limitations of infrastructure, tedious
bureaucratic procedures hamper the access to block maps for Chinese urban planners. For instance, our
interviews with 57 planning professionals reveal that the access to existing block maps held by local
planning bureaus/institutes is highly controlled, as block maps are tagged as confidential within the
current Chinese planning institutions. In summary, block data for the developing world is oftentimes
out-dated and limited in geographical scopes. To a certain degree, this condition has obstructed the
progress of block-level urban expansion modelling for large areas in China. Overcoming such “data
desert” scenarios seems to be the first priority for block-level urban simulation in developing countries.
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3. Data

3.1. Administrative Boundaries of Chinese Cities

A total of 654 cities in China are analysed in this study (Figure 1) (Sansha in Hainan and Beitun in
Xinjiang appearing in MOHURD [32] were not included due to spatial data availability, while Taiwan
was not included in all analysis and results in this paper). Five administrative levels are included:
municipalities directly under the Central Government (four cities), sub-provincial cities (15 cities),
other provincial capital cities (17 cities), prefecture-level cities (250 cities), and county-level cities
(368 cities) (Ministry of Housing and Urban Development, MOHURD, 2013; see Ma, 2005 for more
details regarding the Chinese administrative system). As a city proper in China contains both rural and
urban land uses, our analytical scope is narrowed to legally define urban land within the city proper.
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Figure 1. Administrative boundaries of Chinese cities.

3.2. Urban Land Area in 2007 and 2012

In addition to the administrative boundaries, the urban expansion rate for all cities in China
needs to be calibrated using the urban land area information. Thus, information on the total urban
land areas of individual cities from 2007 to 2012 was collected from MOHURD [32]. As a result of
Chinese urbanization, adjustment of administrative divisions occurs frequently every year. These
changes frequently alter the number of cities. For consistency, some city boundaries were merged and
revised according to the 2012 administrative districts and city inventories to ensure that each city is
comparable in the time dimension. According to the statistics, total urban land area of the 654 cites
in China reached 36,352 and 45,361 km? in 2007 and 2012, respectively. The average growth rate of
the 654 cities for that time period was 4.5%. Furthermore, the growth rate of every single city from
2007 to 2012 was estimated for the business-as-usual urban expansion scenario. Figure 2 presents the
aforementioned information for all Chinese cities.
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Figure 2. Urban land area in 2012 and the urban expansion rate during 2007-2012 for all Chinese cities.

3.3. The Ordnance Survey Roads and Points of Interest (POlIs) in 2011

Two datasets are used for generating the urban blocks of all Chinese cities. The first one is
the 2011 ordnance survey map of China with detailed road networks obtained from a local road
navigation firm based in Beijing. Almost all detailed road networks in various levels including streets
and regional roads were included in this dataset according to the comparisons with Google Maps
and Baidu Map (a main online map service provider and popular online search engine in China,
http:/ /map.baidu.com). Total road length was 2,623,867 km for 6,026,326 segments (we would use the
term “road” for all types of paved transportation network elements, such as streets and highways).

A total of 5,281,382 POIs were gathered and geo-coded by business cataloguing websites.
The initial 20 POI types are aggregated into eight general assemblies: commercial sites account
for most POls, followed by business establishments, transportation facilities, government buildings,
and so on. POIs labelled as “other” are used in estimating land use density but were removed in the
land use mix analysis as this type of POI with mixed information is not well organized and classified
according to our review. The data quality is secured through manually checking randomly selected
POls. Moreover, this empirical framework is extensible in the sense that POI counts can be replaced by
other human activity measurements, ranging from the more conventional land use cover derived from
remote sensing images to ubiquitously available online check-in service data (e.g., Foursquare) in the
background of web 2.0.

3.4. Other Data

The distance to city centres for all blocks is considered in the proposed MVB-CA model.
The administrative centre, generally also the city centre, of each city has been manually prepared as a
point layer in GIS software. In addition, two layers representing natural limitation for construction
are selected as the exclusive development area in the MVB-CA model: steep areas with a slope over
25 degrees and the water space. The steep area is calculated from a DEM of China with a spatial
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resolution of 90 m, and the hydrological area is extracted from the national fundamental geographic
information system (NFGIS, 1:4,000,000) of China.

4. The MVB-CA Model

Few applied urban models can achieve a large spatial coverage with block-level spatial units
due to the data availability and computation load. In this study, we develop a mega-vector-blocks
cellular automata model (MVB-CA) to simulate urban expansion at the block level for 654 Chinese
cities. The following sections describe the detailed methodologies of MVB-CA, the first block-level
urban expansion model at a national scale.

4.1. The Model Framework

There are three modules in MVB-CA: the macro module, the block generation module, and the
vector CA module (see Figure 3 for the flow chart). In the macro module, the urban expansion rate is
set for each city according to observed urban land expansion from 2007 to 2012 as the baseline scenario.
The other two scenarios were set in accordance with well-known spatial development strategies which
are described in detail in Section 3.2. In the block generation module, the model was fed a 2012 base
map based on blocks that were generated using the AICP framework (automatic identification and
characterization of blocks) developed by Liu and Long [33] (see Section 3.3). In the vector CA module,
calibrated parameters extracted from Beijing data and scenario settings by the macro module are fed
to simulate future urban expansion from 2012 to 2017 (see Section 3.4).

The macro module(Section 3.2) The parcel generation module (Section 3.3)
Urban area in Urban area in Road networks in T inierss
2007 for each city 2012 for each city the ordnance survey
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Figure 3. The structure and flow diagram of MVB-CA.

4.2. The Macro Module

Precisely predicting future urban expansion rates for Chinese cities is not easy or straightforward.
Alternatively, a scenario analysis approach is adopted for simulating future urban expansion for
all Chinese cities in our model. Relevant large-scale studies of China show that policy regulations
(especially the macro-regulation and regional development policies) and socioeconomic development
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(economy and population growth) are the leading driving forces of urban expansion [11]. According
to Deng et al. [14], China’s urban land expands at a rate of 3% when the economy grows by 10%.

In this paper, three scenarios are proposed for the future development. The first one is the
business-as-usual scenario (BAU), a baseline scenario indicating that future urban expansion would
replicate historical patterns. Urban land areas for each city in the designated year are estimated
depending on the urban land expansion rate calculated using urban land areas in 2007 and 2012.

The second scenario is the Urban Agglomeration Oriented Scheme (UAO), as indicated in the
11th Five-Year Plan and the 12th Five-Year Plan of National Economic and Social Development in
China. In the next five to ten years, urban agglomerations in China will be developed as the main
body of urbanization [34]. Considering the regional variance in China, the central government has
agreed to support more than 30 regional planning or development policies in urban agglomerations
involving 23 provinces, autonomous regions, and municipalities. These policies are aimed at
effectively promoting the urban agglomeration towards healthy and sustainable development in
China. Based on the above background and related studies on urban agglomerations in China [35],
23 Urban Agglomerations (UAs) are considered in the second scenario. The boundary of each urban
agglomeration is a combination of administrative boundaries of cities in the urban agglomeration.
These 23 urban agglomerations account for 21.3% of the total land resources, 55.7% of the total
population, 64.2% of the total non-agriculture population, and 79.7% of the gross domestic product
(GDP) in China (Figure 4). According to the economic growth performance and urban expansion rates
for 2007-2012, 355 cities in UAs are assigned a comparatively higher urban expansion rate of 5.0%
with the other cities given a relatively lower urban expansion rate of 4.0% for five future years.
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Figure 4. The urban agglomerations in China.

The last scenario is the new type of urbanization scheme (NTU). The NTU is a large-scale
future development roadmap that was announced by the central government at the end of 2013 [36].
It symbolizes the shift in focus from land-centred urban development to people-oriented urbanization.
One of its key aspects is to foster the coordinated development between large, middle, and small cities
as well as small towns. In other words, small cities and towns shall be given priority in urbanization
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and urban development, while the big cities and especially the megacities will be controlled step by
step. (The China Central Urbanization Working Conference was held during 12-14 December 2013 in
Beijing. This conference put forward the urbanization path of different kinds of cities in China: fully
liberalize the settlement restraints on small cities and towns; orderly open the settlement limit on the
medium-sized city, set reasonable settlement conditions in big cities, and strictly control the scale of
large urban populations.) In this paper, we set the urban expansion rate of each city according to its
existing urban area. Based on the city size classification from the Chinese City Construction Statistics
Yearbook, four types of cities are identified for five future years as follows: super cities with urban
land area over 400 km? in 2012 are set with an urban expansion rate of 3.0%; mega-cities with urban
land area between 200 and 400 km? in 2012 are set with an urban expansion rate of 4.0%; big cities
with urban land area between 100 and 200 km? in 2012 are set with an urban expansion rate of 5.0%;
and medium-size and small cities with urban land area below 100 km? in 2012 are set with an urban
expansion rate of 6.0%.

4.3. The Block Generation Module

For preparing the base map for block-level simulation of future urban expansion, we use our
established AICP framework for generating blocks and selecting all urban blocks from all blocks
generated [33]. This technique was applied using roads in OpenStreetMap (OSM) to partition regional
space and inferring urban blocks using well-classified POIs provided by online map providers. The full
process is automatic and could be easily adapted to annually update existing block maps with upgrades
in OSM and POls.

In this paper, we replace the OSM roads used in Liu and Long [33] with the detailed road network
of the ordnance survey to generate blocks in all cities in China. Before generating blocks, the road
layers are processed according to their hierarchy respectively before being merged as a single layer.
More specifically, all segments are connected with a 20 m tolerance, whereas street segments shorter
than 200 m are trimmed to avoid cul-de-sacs. This thresholds selection is reliant on the basic judgment
of collected spatial datasets. Moreover, the width of all roads is also defined relying on their hierarchy.
Finally, all blocks are presented when the roads are removed from the study areas, and POlIs are used
for calculating density of each generated block. Then the vector cellular automata models are applied
to each city to select urban blocks from all generated blocks, according to each city’s total urban area
which was obtained from MOHURD [32]. The derived urban blocks in 2012 are the basis spatial
entities for the MVB-CA simulations.

4.4. The Vector CA Module

According to the extracted urban expansion pattern from 1992 to 2008 in China estimated by
Liu et al. [4] using DMSP /OLS nighttime light data, most of urban land expansion was distributed
on the periphery of existing urban land. This indicates that the distance to the city center and spatial
adjacency should significantly influence the future urban expansion. Therefore, spatial criteria are
taken into consideration in the vector-based constrained cellular automata (CA) for simulating urban
expansion (each city has its own constrained CA model for allocating urban blocks) [37]. Traditional
CA consists of five components: (1) space represented as a regular grid composed of a collection of
homogeneous cells; (2) a set of possible cell states; and the (3) transition rules which determines the
evolution of the state of each cell; based on (4) statuses of its neighbouring cells; and (5) some external
constraints at each time step [38,39]. In the proposed CA model, each block is regarded as a cell in
CA, and the cell status is 0 (no expansion) or 1 (expanded from rural to urban). At the very beginning,
the status of all cells are set according to the 2012 blocks. Based on Feng et al. [40], the conceptual
model of the proposed constrained CA is represented as Sf“ =f (Sf, Qlt-, Con, N), where Sf and Sf“
are the states of a cell/building/lot/parcel/block i at time ¢ and ¢ + 1, respectively; f is the transition
function; Qf is the neighbourhood evaluation function; Con are the constraints on urban expansion;
and N is the total number of cells. Every discrete time in CA is a year.
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The overview process for the CA module is as follows. First, the initial status of each spatial unit
(block in this paper) is set according to existing land use data in the study area. Second, the spatial units in
the study area are evaluated from various dimensions like accessibility and surrounding development
status. The weight of each dimension can be identified using observed urban development or set by
domain experts. Third, the status transition probability of each spatial unit can then be evaluated,
and the spatial units with highest probability are urbanized in the iteration. Last, the module runs for
times of iterations until the total development amount meets the pre-settings.

Specifically, the probability of cell ij changing its state from non-urban to urban at time ¢ can be
represented as P/ = (P;); x (Pq); x con(-) x P, where (P); is the local probability that a cell
converts from the non-urban to the urban; (Pq)); is the state conversion probability of the cell within its
neighbourhood; con(-) is the restrictive condition for urban development; and P, denotes the stochastic
disturbance of any unknown errors [40].

The local (P;); probability can be determined through a set of factors using a logistic regression

method [41]: .
(P); = 1)

1+ EXP[—(ﬂ0+k);lﬂka)]

where ag is a constant, ¢y is the spatial variable, a; is the estimated parameter/weight of ¢y, and m is
the amount of spatial variables.

In this paper, we select four spatial factors: (1) the natural logarithm of a block size (SIZE_LN);
(2) the compactness of a block (COMPACT), calculated using Perimeter x Perimeter/Area; (3) the air
distance to city centres in km (CENTER); and (4) the POls density calculated based on POIs (DENSITY).
The density is standardized to a range from 0 to 1 using the following equation: standardized density =
log(raw)/log(max), where sraw and max correspond to density of individual blocks and the nation-wide
maximum density value, respectively.

Apart from other raster-based constrained CA models, our model contains only two external
spatial factors which are considered to be the most important factors driving a block’s spatial expansion.
The air distance to road networks is another variable often used in urban expansion models. However,
this information is already contained in the block itself, since blocks are mostly delineated from road
networks. The factors considered in the vector CA module are similar to Seto et al. [42], which uses
slope, distance to roads, population density, and land cover as the primary drivers of land change for
global land use simulation.

The state conversion potential of the cell within the neighbourhood can be defined as:

Y. con(S! = urban)

(PQ>1' = ” ()

where con(S! = urban) represents the number of urban cells amongst the neighbourhood of cell ,
and # is the count of cells in the neighbourhood of cell i. Five hundred meters is adopted to identify
the neighbouring relation between cells. In this study, we buffer each cell (block) by a distance of
500 m, and all cells intersecting with or completely falling in a cell’s buffer zone are regarded as
the cell’s neighbourhood. Two layers, the steep area and various water bodies, are included as the
restrictive condition. Urban expansion is forbidden in these areas. The constraints are expressed as
con(cell! = suitable) with a value of 0 or 1, where 1 indicates that there is no restriction on the block’s
development from rural to urban, while 0 indicates that the block is forbidden from being developed
as urban.

The stochastic disturbance P; in the model represents any possible change of local policies and
accidental errors. It is calculated using:

P =1+ (~Iny)f ©)
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where 7 is a random number ranging from 0 to 1, and §, ranging from 0 to 10, controls the effect of the
stochastic factor.

By comparing the global probability P/ with a predefined threshold value Py, in the range of [0, 1],
the model is then used to decide whether a non-urban cell can be converted to urban state at time t + 1:

g+l Urban for P! = Pyg
! NonUrban for P! < Py,

4)

It should be noted that block subdivision is not taken into account at this stage, considering the
vector CA module is expected to be applied for urban expansion simulation for a short temporal span
(five years in this paper). Block subdivision is expected to be included in the vector CA module in
the future.

4.5. Model Computation Load

The computation time has been a bottleneck for vector CA models. In this paper, the key
computation load is attributable to neighbourhood calculations. Blocks were stored in ESRI file
Geodatabase as a polygon feature class, and we created an attribute for blocks for storing the IDs of a
block’s neighbouring block(s). It took a standalone computer (IBM T430s with an Intel Core i7 CUP
and an 8 GB RAM) approximately three days for all 851,054 blocks in 654 cities. This process was
facilitated by ArcGIS using Python. This process is automatic and only needs to be calculated a single
time, rather than for each iteration. Once it has been calculated, we do not need to alter it during all the
simulation processes, thus the computation load problem is somewhat mitigated. We also recognize
that separating the neighbourhood calculation by city significantly decreases the computation time
consumed (from 12 days for all blocks simultaneously loaded into memory to three days).

After the neighbourhood preparation, we ran the simulation iteration by iteration for each city.
Each block’s state (urban or not) in the initial stage is stored as an attribute of the table. We also
reserved two attributes for storing the state of a block in the previous and current iterations. Since
the state of blocks was keeping changing in each iteration (new expanded blocks generated in each
iteration), we calculated the transition probability for each block in each iteration via reading the
attributes of a block like its neighbouring block’s IDs and the block’s state in the previous iteration.
In total, for all cities, it takes approximately 20 h to simulate urban expansion for each scenario, which
is acceptable for a national scale urban expansion model at the block level.

4.6. Model Examination

The model examination can be conducted separately for each module. As a rule-based module,
the macro module does not need to be validated. The baseline scenario is set based on the historical
urban expansion data. Furthermore, the block generation module has already been validated in Liu
and Long [33]. Hence, only the validation of the vector CA module needs to be discussed in this
section. First, we compare the baseline scenario results in Beijing with the output of the BUDEM
model [8,18], which is a cell-based (500 m in square) urban expansion simulation model for Beijing.
There are more spatial factors (market-oriented and institutional types) in the constrained CA based
BUDEM, which has been successfully applied in various planning practices in Beijing. BUDEM is
calibrated using the same observed urban expansion to guarantee its comparability with the MVB-CA
model in the city of Beijing. We admit the limitation on validating the vector CA module with a Beijing
model and this process can be regarded as “inter-model comparison”. Second, in addition to the
formal validation, the simulated urban expansion can also be examined by online browsers in the form
of released block maps at CartoDB (an online WebGIS), in a manner of Wiki-map [43]. Browsers with
local knowledge could engage, point out obvious simulation results, and comment on the simulation
results. The comments enable the authors to upgrade the developed MVB-CA model.
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5. Results

5.1. The Blocks of All Chinese Cities in 2012

The generated urban blocks in 2012 are shown in Figure 5. There are 761,152 urban blocks in
total for all 654 Chinese cities with a total land area of 45,361 km? (the average urban block size is
6.1 hectares).

- Urban area in 2012
f

Urban agglomerations

L. . 0 500 1,000 Km
Provincial boundaries

Figure 5. Urban land areas of all Chinese cities.

5.2. Model Calibration for the Vector CA Module

Due to the unavailability of historical data, we cannot calibrate the vector CA module for the
whole country. Instead, we limit our model calibration within the city of Beijing (12,183 km?, Yanqing
and Miyun in the 16,410-km?-Beijing Metropolitan Area not included), where both the block maps
in 2007 and 2012 are obtained, in which urban land is available. Since the block geometries changed
significantly from 2007 to 2012, only the intersected blocks are regarded as the samples (N = 26,877
including 5119 expanded blocks). The urban expansion is identified (expanded as 1, non-expanded
as 0) and factor values are attached to all “intersected” blocks accordingly. Logistic regression is used
for identifying parameters for spatial factors. The explanatory power of logistic regression was 81.9%.
The logistic regression results shown in Table 1 were applied in the MVB-CA model for all city regions
(we admit the heterogeneity of weights in various city regions. We do not have existing blocks in
other cities in writing this paper). The MVB-CA model was used in the city of Beijing at the same
time. An overall precision of 83.2% indicated the applicability of our CA model in replicating historical
urban expansion in a city region.

Table 1. Logistic regression results for the Beijing blocks.

Factor Coefficient S.E. Wald Sig.
SIZE_LN —0.197 0.007 693.572 0.000
COMPACT 1.933 0.962 4.033 0.045
CENTER —0.101 0.002 1891.809 0.000
DENSITY 2.230 0.110 407.554 0.000
Constant 2.224 0.082 739.440 0.000

Note: all variables are significant at the 0.05 level, and the overall accuracy of the regression is 81.9%.
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5.3. Simulation Results of the Vector CA Module

We use the calibrated parameters in Table 1 for simulating the three urban expansion scenarios,
each of which replicates the historical urban expansion trend. The simulation of urban expansion
patterns of China is shown in Figure 6 (limited to the BAU scenario). The BAU scenario presents
a path-dependent urban expansion relying on stable economic growth and land-use policies. Total
urban land areas estimated by BAU are 62,835 km? in 2017, an increase of 38.5% compared to
45,361 km? of urban land in 2012. The overall spatial pattern of urban land in 2017 is similar to
2012. Some typical urban agglomerations in the east developed into metropolitan interlocking regions
(See Figure 7). The simulated pattern in the UAO scenario indicates an urban agglomeration oriented
scheme, and urban lands of those cities in UAs will expand significantly no matter where they are
located. Total urban land area of the UAQO is 58,394 km? in 2017, an increase of 28.7% compared to
urban land in 2012. This is 4441 km? less than the BAU scenario. The NTU scenario considered the new
type of urbanization scheme that was proposed by the central government of China in late 2013. In this
scenario, mega-cities are strictly controlled for their urban land expansion that encroaches farmlands
in the next five years. It is worth noting that medium and small-sized cities demonstrate a more rapid
expansion than big ones. The total urban land area of the NTU is 58,930 km? in 2017, an increase of
29.7% compared to urban land in 2012 and a decrease of 3905 km? in comparison with BAU. Among
all the three scenarios, the BAU scenario has the largest urban expansion rate (38.5%) and may denote
the upper limit of total urban land in China. In contrast, spatial development strategies considered
by the UAO and NTU scenarios have significant effects on curbing urban sprawl of Chinese cities by
balancing both the sustainable supply of urban lands and demands of rapid urbanization.

- Urban area in BAU
o 500 1,000 Km

Provincial boundaries

Figure 6. Urban expansion patterns of the whole area of China for the BAU scenario. (We only list one
scenario in this figure, as it is difficult to reveal the differences between the three proposed scenarios
for the whole China with a small map. For more vivid difference between scenarios of the whole China,
please refer to Table 2 and online visualization.)

The differences among spatial patterns in the three scenarios are originated from the total areas of
cities. For instance of the county-level city Jiangyin, the total urban area expanded in the UAO scenario
is the largest, followed by the scenarios NTU and BAU. Therefore, urban expansion simulation results
of Jiangyin in the BAU scenario are contained by those in the NTU scenario, which are then contained
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by those in the UAO scenario. In the future study, we would propose more scenarios considering the
configuration of spatial factor weights as well, to reflect various spatial patterns of each city.

To illustrate more details of simulation results for each scenario, urban land expansion patterns
and total urban land areas of the three most important urban agglomerations: Beijing-Tianjin-Hebei
(BTH), the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) are listed in Figure 7. Without
being exhaustive, several key features can be explored. First, the total quantity of urban land in
the UAO scenario is the largest. By 2017, the three urban agglomerations of BTH, YRD, and PRD
are projected to reach, respectively, 4405 km?, 9144 km?2, and 4834 km? of urban land area. Second,
the three urban agglomerations in the BAU scenario do not have the largest total quantity of urban
lands among the three scenarios, mainly because the urban expansion ratio is relatively lower in
urban agglomerations before 2012, especially compared with the less developed regions that are
experiencing a tremendous urbanization process. Third, the simulation results of NTU in the three
urban agglomerations indicate a more sustainable pattern have the least total quantity of urban lands.

UA 1BAU 2 UAO 3NTU

BTH

YRD

PRD

4660 km? 4834 km? 4519 km?

Figure 7. Urban expansion patterns in typical urban agglomerations. Note that red denotes simulated
urban expansion during 2012-2017 and blue denotes existing urban land in 2012. BAU, UAO and NUT
indicates the business-as-usual, urban agglomeration oriented Scheme, and new type of urbanization
scenario, respectively.
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We have released the simulation results of the three scenarios online (www.beijingcitylab.com).
Figure 8 shows urban expansion maps in the BAU scenario, captured from the future online visualization,
for several typical cities.
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Figure 8. The simulated results in the BAU scenario for typical cities. Note that red denotes simulated
urban expansion during 2012-2017. The base map is the OpenStreetMap.

6. Discussion

6.1. The Model Evaluation from Online Feedback

In the first stage, the BAU scenario (limited to the city of Beijing, 12,183 km?, the same as the model
calibration of MVB-CA in Section 4.2) is compared with the results of BUDEM. BUDEM was calibrated
using the same urban blocks in 2007 and 2012 (also used in calibrating MVB-CA), in which blocks
were converted into the 500 m cells. The seven spatial factors remain the same as those in Long et al.
(2012). The overall precision in the logistic regression for parameter calibration of BUDEM is 96.1%,
and calibrated parameters are shown in Table 2. The distance to the city centre (Tiananmen Square) is
included in both models (CENTER in MVB-CA and I_tam in BUDEM). Clearly, the significance of the
distance has illustrated that its influence on historical urban expansion in both models are both positive.
That is to say, a place closer to the city centre tends to have a higher probability to be developed. (Note
we use the air distance for CENTER in MVB-CA and the influence potential in BUDEM, which means
their signs are opposite.)


www.beijingcitylab.com
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Table 2. Logistic regression results for the Beijing blocks.

Factor Coefficient S.E. Wald Sig.
1_tam 10.402 0.378 756.566 0.000
1_city 2.684 0.175 234.110 0.000
I_town —2.016 0.220 83.652 0.000
1_road 7.826 0.836 87.592 0.000
g_conf 0.535 0.089 35.774 0.000
Constant —11.832 0.801 218.329 0.000

Notes: 1_tam = the attractive potential of Tiananmen Square, 1_city = the attractive potential of the closest new city
centre, |_town = the attractive potential of the closest town centre, I_road = the attractiveness of the closest main
roads, and g_conf = whether or not a cell is forbidden for urban development. The other two factors in BUDEM,
the attractive potential to the closest river (I_river) and whether or not a cell is farmland, are not significant in
the regression.

In the following step, calibrated parameters of BUDEM were applied together with total urban
area in 2017 and urban pattern in 2012 (converted into 500 m cells) for simulating urban expansion in
Beijing. According to the settings in the BAU scenario of MVB-CA, the total urban expansion area of
Beijing was 174 km?2, from 1445 to 1619, and the annual expansion rate from 2007 to 2012 for Beijing
was 2.3%. Figure 9 shows the comparison results of the BAU scenario (expanded blocks) between
MVB-CA and BUDEM (expanded cells) in the city of Beijing. Expanded areas in both models exhibited
similar patterns according to our visual judgment. After a detailed examination of the two expanded
patterns, we determined that the overlaid area shared by both patterns was 119 km? (68.4% of the total
expansion) as shown in Figure 9. The overall precision in terms of the intersected results is acceptable
considering the differences between the two models. In addition to the overall precision estimation,
we further compared two patterns from the view of spatial distribution. We divided the whole city
of Beijing into six zones according to five ring roads shown in Figure 9, and the expansion areas in
each zone were calculated. The correlation coefficient for expansion areas simulated by MVB-CA and
those by BUDEM in six zones was 0.74. We also observed the average patch size simulated by BUDEM
was 23% larger than that by MVB-CA. We also found that the simulated pattern was not realistic
when MVB-CA is adopted to predict for a longer time. A big picture can be gained from the various
dimensions of comparison between the vector CA based MVB-CA and raster CA based BUDEM.

0 25 50 Km

MR R

[ R B ooy

Figure 9. Simulated urban expansion by MVB-CA and BUDEM in the city of Beijing.
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For the online examination, our simulated-to-be-expanded blocks in the BAU scenario were
released online for user’s comments via posting a message on Sina Weibo, which is known as “the
Chinese Twitter”. The unique-ID was associated with each visualized block, thus enabling a browser
to identify a comment associated with the block. Generally, the simulated urban expansion by the
block-based MVB-CA was attractive to the browsers since its geometry corresponded to readers’
knowledge and local sense about the built environment as compared with a cell in square with no
geographic meaning (e.g., as revealed by Figures 7 and 8). In a period of three weeks after the
results were released, over 83 reposts and 76 comments were received. Most of the comments were
positive remarks on our study and pointed out such efforts are needed by developers, planners,
and decision makers. Two comments mentioned several simulated-to-expanded blocks were not
plausible to develop due to the strict local policies on development. Four people commented that
the regions highlighted by local governments by means of spatial plans or development policies
should be taken into account in the model. The simulated urban expansion would be further
enhanced with more comments received from participators with local experience and knowledge of
the physical environments.

6.2. Potential Biases and Next Steps

Besides the merits of this study, there are several limitations to be improved. First, the block
generation process would be enhanced via incorporation with other existing land cover datasets.
We are planning to include the global land cover data FROM-GLC-agg by Yu et al. [44] as well as the
urban land area inferred from DMSP/OLS by Yang et al. [45] for assisting in urban block generation.
Second, there are some large blocks developed in the simulation results, especially in small cities,
which are not very realistic. Techniques for block subdivision would be an alternative solution for
generating practical urban blocks in China [46-49]. Third, the model should be calibrated using
national datasets, rather than being limited to Beijing to improve the precision of simulation. We admit
that it is not ideal to use the rules extracted from the historical urban expansion of Beijing to simulate
urban expansion for all other Chinese cities. We are proposing a new simulation schema aimed at
stimulating urban expansion at the block/block level for a large number of cities, and it would be
extremely difficult to gather historical datasets for all Chinese cities at the block level. We hope this
will be alleviated with increases in the accumulated spatial datasets for China resulting from the
big/open data era. In addition, this study explores a novel framework for simulating block-level urban
expansion for a large geographical area, and we hope this framework will attract interest from other
scholars. The simulation results rely on both the calibrated rules and the tuned parameters in the
various proposed urban expansion scenarios, thus the model can be regarded as a policy-testing lab.

With the aforementioned potential biases in mind, future studies will focus on the following two
aspects. First, a spatial equilibrium module considering the provincial level input-output analysis
would replace the current “macro module” in the near future. The integration of an equilibrium
mechanism with the dynamic CA model enables linking the inter-provincial and even inter-city
simulation at the macro level and urban expansion simulation at the local block level. Second, as
suggested by the online comments, local development policies and spatial plans of various cities could
be added as a factor in the vector CA module.

6.3. Potential Applications

Applications of the established national-scale urban expansion simulation model for the whole of
China, together with three simulated scenarios, include but are not limited to the following aspects.
First, national spatial development strategies, reflected in the form of variation in each city’s urban
expansion rate, could be visualized at the block level using the MVB-CA. This would enable linking
macro-scale policies to local developments. Although we only simulate three scenarios reflecting
macro-scale strategies in this paper, other spatial policies in local cities could be evaluated via adjusting
the parameters of spatial factors in the MVB-CA. Second, block-level simulation results can directly
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evoke places of interest for local stakeholders in future developments. This is not easily achieved
by the simulation results from other spatial expansion models with large simulation units. We have
shared the results online to help promote this application, while the feedback can be absorbed in
model adjustments. Third, the simulation results make it possible to conduct urban expansion impact
analysis, e.g., ecological and social impacts. With the release of the simulated urban expansion
scenarios, we expect that it will attract researchers to apply the simulated patterns to addressing
impacts in various avenues.

7. Concluding Remarks

In this paper, a mega-vector-blocks cellular automata (MVB-CA) was developed and used to
simulate the urban expansion of 654 Chinese cities. Three modules, the macro module, the block
generation module, and the vector CA module, were included in the MVB-CA. The macro module
was responsible for setting the urban expansion rate for the next five years in each city, taking into
account both historical urban expansion rates and national spatial development strategies. The block
generation module was used for identifying existing urban blocks in 2012 using the framework of
AICP [33]. The vector CA module was applied to simulating urban expansion from 2012 to 2017, and it
was calibrated using the urban expansion data in Beijing. Three urban expansion scenarios, baseline
(BAU), urban agglomeration (UAO), and new urbanization development (NTO), were simulated for
2012-2017 via the MVB-CA. We examined the simulation results in two ways, comparing the baseline
scenario of Beijing with a raster CA model (BUDEM) we had previously developed and validating the
results in a wiki-like manner.

As the first large-scale urban expansion model with block-level resolution for the whole area
of China, our contributions mainly lie in two folds. First, we develop a vector cellular automata
model for the whole country using open data and existing CA model strategies while enabling future
upgrading to address inter-city connection and interaction. The model enables linking national spatial
development strategies with urban expansion via simulating macro-scale policies at a block-level.
The other contribution is the model’s empirical application in the Chinese city system, while other
studies in China only focus on one city or one region. The block-based nature of the MVB-CA enables
its potential application in urban planning practice, which regards a block as the planning/design
unit. It is more necessary in the background that most Chinese cities (especially middle or small sized
cities) do not have their urban expansion models. The simulation results have been shared online
(www.beijingcitylab.com) as an important data infrastructure for both practitioners and researchers.
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