AX3| A / Please cite this article as:

Zhang, Z. X., & Long, Y. (2019). Application of Wearable Cameras in Studying Individual
Behaviors in Built Environments. Landscape Architecture Frontiers, 7(2), 22-37. https://doi.
0rg/10.15302/J-LAF-20190203

FRABNERRETA
S5ZRFRXRPRINA

APPLICATION OF WEARABLE
CAMERAS IN STUDYING
INDIVIDUAL BEHAVIORS IN
BUILT ENVIRONMENTS

1 WIS 5t

ST, 3T 3 I S RO R JRE ) S B SR 5 s T i R 56
CEREANW BT, iy it 5 S o S s 8] A 2 [ ) ol 5 s
MAERTFENARAT R SIS R 0w, AN E R e A —E M
Ro A0k, MR AE" . SRR - FEEL - TS 4 -
KA NBRSEBEE T 17 53 s T Z 1806 R BT sal, 9548
Wi D - 2SR - FURNZE - BARSEINIE TIOERTY, SRR

022

https://doi.org/10.15302/J-LAF-20190203 WIFSAT1E] RECEIVED DATE / 2019-01-31

FESES/ TP2, TUIBL  EAFHRES /A

KERF
BEAFEAFRARE,; RFAFRAFME

TiE*
BEAFEAZEEIAARR. BTESID

ZHANG Zhaoxi

Research Assistant at School of Architecture, Tsinghua University;
Master in Architecture, Tongji University

LONG Ying

Special Researcher and Doctoral Supervisor at School of
Architecture, Tsinghua University

* 38 AR #

Higb: A HEAFEAFER
HE % 0 100084

I 45 . ylong@tsinghua.edu.cn

R"E
MESIR T EaroEk, AMIFFBETE
REFEATINREERR MEITASHHIRT
KR ERED . FEVENAI LI SN MEAE
TEFRT FERME “ERAE BHTE
ZAEE. AXLUNMAREE NRA, RAFE
BINAERR MMM T A SEMIME X R PAINA .
HRET AR FRTFENAE ST AEE
FHwEEO. FBMatlabHTERIRBI=MT
I, WmEEE— BRI EAIERIRS 598K
BT TEMRIRG, FWH T =MEENNS S .
bfE, ETERERSHATRIER, HRX
MET RS BESE. BEER. WAEG
EHEEFST. ARER, FEABENREN
ERRHEFEESFENMAMTASHZER,
ALBEIR NMAES B PRT RS, YR
METHEEMINRZ BNXREEEEE N,

Xigia
FISFEIRSE; WEETA; £HEE; HFE
e, BEIRRHE

ABSTRACT

With the advent of the Fourth Industrial
Revolution, people have begun to explore the
potential for new technologies and new devices in
studying the relationship between human behavior
and urban design. The emergence of wearable
cameras offers more possibilities for monitoring
individual behavior in built environments as

a kind of “lifelog.” This article explores the
applications of wearable cameras in studying

the relationship between individual behavior

and built environments. Using manual image
identification, image recognition with Computer
Vision Application Programming Interface

(API), and color calculation in Matlab, this study
analyzed 8,598 photos recording the volunteer’s
behaviors and activities during a week. Based

on high-accuracy manual image identification
results, the research analyzed the volunteer’s
behavior, time use, movement path, and
experiencing scenes. The study showed that the
big data base of images collected by the wearable
cameras contained rich individual activities and
spatiotemporal information that could be used

to effectively describe the individual behavior in
space and further contribute to the study of the
relationship between individual behaviors and
built environments.

KEY WORDS
Wearable Device; Spatiotemporal Behavior;
Lifelog; Quantified Self; Big Data of Pictures
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1 Background

Nowadays, with the refinement of user needs and spatial quality,
more attentions are paid to improve user experience in urban
design and renewal projects. Also, scholars have made their
efforts in studying the relationship between individual behaviors
and urban design. Since the 1980s, Yoshinobu Kuwahara'",
Claire Cooper Marcus'”, Jan Gehl”! and other pioneers have
laid the foundation for the study on the relationship between
human behaviors and space usage; Lawrence D. Frank et al."¥)
as well as Anne Vernez Moudon et al.”!, conducted empirical
research on the impacts of environmental factors within urban
blocks on human behaviors; Chinese scholars including Xu
Leiqing et al.', Pan Haixiao et al.”, and Chen Yong et al."”
have all focused on the changes of people’s behavior within the
environment by recording their activities in and interactions
with the environment through observation, questionnaires,

and interviews. Despite these achievements, few studies have
focused on the behavioral characteristics of individuals in

urban space. Limited by human labor and time cost, it has been
difficult to objectively and continuously track and collect data
of an objected individual in a long period of time. With the
development of technology, the new data environment, formed
by big data and open data, has provided a strong support for
urban spatial research”), including Point of Interest (POIs) data,
bus IC card data"”, and streetscape data''"!. Yet, the acquisition
of individual data is still difficult. Exploring effective methods to
obtain individual data will help make up for shortcomings in the
current study on the interactions between individual behavior

and built environment.

2 New Device Development

2.1 Wearable Devices

With the dominance of digitization and intelligence, new
technologies and new devices are emerging like mushrooms
after rain. Common wearable devices such as smart bracelets
and watches can record user’s physical condition and activities
via human-computer interactions. At present, in the research of
individual monitoring, there are two types of wearable devices
mostly used: one is used to monitor bio-signals. For example,

21 yised wearable chest belt to monitor

Amir Muaremi et al.!
individual’s sleep quality and mental stress, and Peter Aspinall
et al."” demonstrated how mobile electroencephalogram (EEG)
can monitor individual’s emotional changes. The other is used

1 [14]

to record behaviors. For example, Park Jonghoon et al."™ used

uni- (LC) and tri-axial accelerometers (AM, ASP) to analyze
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individuals’ physical activities, and Georgina Brown et al.""”!

used wearable SenseCam to help amnesiacs record daily
activities. In 1945, Vannevar Bush proposed the concept

11! which means using intelligent devices to

of “lifelog,
record individual life characteristics comprehensively and
continuously, to form a large number of individual databases
which record ones’ activities in a digital way, in order to
promote a better understanding of the interaction between
humans and the environment. Nowadays, wearable devices
have been applied to achieve this prospect.

Wearable devices have been used in fields such as
medical health, environmental perception, and data analysis.
Although it is still at the initial development stage in China,
Chinese researchers have begun to more actively engage
wearable devices in various disciplines. Fan Changjun and
Gao Fei'"”, for example, discussed from the perspective of
computer science about the process of applying wearable
sensors to obtain individuals’ movement information and
physiological signals and identifying human activities by
using the deep neural network; Feng Xue and Zhang Dan'"*
employed mobile sensing technology to collect psychological
and behavior data from the perspective of social psychology.
Despite the applications in built environments are rare,
scholars such as Chen Zheng and Liu Song'"” assessed real-
time in-situ environmental affective experience by recording
individuals’ physiological signals obtained with wearable

bio-sensors, and Shen Yue and Chai Yanwei® recorded the
movement trajectory of community residents with wearable

GPS devices to learn their daily reaching realms.

2.2 Wearable Cameras

In the 1970s, Steve Mann"" developed a wearable camera
based on human-computer interactions. Since then, with the
development of microelectronics, wearable cameras have been
continuously upgraded, bringing forth SenseCam, GoPro,
Narrative Clip, etc. that have become common devices to
record numerous image data of individual activities.

Vaiva Kalnikaité et al.”” found that photos taken by a
SenseCam camera could effectively enhance an individual’s
memory of details, emotions, and preferences. Gemma Wilson
et al.”” invited 18 volunteers aged from 52 to 81 to wear
SenseCam cameras for a week, and found that they gradually
got used to wearing the cameras without inconvenience to
their daily life, which revealed that wearable devices are more

1.2 recorded

acceptable than expected. Aaron Duane et a
individuals’ behavior by identifying the elements such as

computers, printers, and notebooks from the images collected
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with visual concept detectors. All these research has evidenced
the advantage of wearable cameras in recording individual
activities and generating “lifelogs.”

Scholars have also explored the applications of wearable
cameras in the built environment. For example, with the aid
of GPS device, Timothy Chambers et al.””! asked 168 children
in New Zealand aged from 11 to 13 to carry wearable
cameras to record their daily activity patterns. Amber

1.%"used wearable cameras to investigate

L. Pearson et a
children’s daily access to water areas. By analyzing the image
data such as the pixel ratio of water in the pictures, 23 types
of waterfront activities and corresponding time spent were
identified. Nevertheless, applying wearable cameras and the
image analyses to study the relationship between individual
behavior and urban space is still an emerging research

interest.
3 Experiment Design

As an exploration that studies the relationship between
individual behaviors and built environments with wearable
cameras, this research attempted to capture image data
and identify image information through three methods
— manual image identification, image recognition with
Computer Vision Application Programming Interface (API),
and color calculation in Matlab. Researchers then analyzed
the volunteer’s behavior, time use, movement path, and
experiencing scenes. The research framework is shown in
Figure 1.

A pre-experiment was carried out on September 3,2018.
The formal experiment was performed from October 8 to
14,2018 (Monday to Sunday) in Tsinghua Campus and the
surrounding areas in Haidian District, Beijing where the
volunteer lives and works. The experiment used a Narrative
Clip 2 wearable camera that takes a photo every 30 seconds,
recording all kinds of the volunteer’s activities, from getting
ready to work in the morning until arriving back home at
night (Table 1, 2). The volunteer was asked to wear the
camera in front of her chest and ensure that the shooting
was not blocked by clothes or hair and that the camera faced
the same direction as the individual moves towards (Fig. 2).
The volunteer also needed to export the photos and charge
the camera every day. Photos that involve privacy could be
deleted by the volunteer before submitting the rest to the
research team for analysis. Averagely, 1,200 to 1,500 images
can be obtained per day, which makes a total of 8,000 to
10,000 images per week (Table 2).
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Table 1: The volunteer’s information HABVIREER9ET
2] i Mzt Bk 58 *hE BIRREREH SFER il The volunteer was
Gender Age Location Occupation Height Weight Body Mass Index Body condition lliness history required to wear the
(BMI) camera in front of the
chest.
ES 26 PEIER REATLEE 158 cm 53 kg 22.4 R T
Female Beijing, China Scientific Healthy N/A
researcher
x2: EIRICRER
Table 2: Collected data
=)0 [lka:500E) BREH BYBRRHY x5
Date Time period wearing Total number Number of Weather
the camera of photos valid photos
iR i
Pre-experiment 2018-09-03 9:30 ~ 22:30 1,455 1,446 Sunny
E2S
2018-10-08 8:00 ~ 22:30 1,283 1,272
' Cloudy
i
2018-10-09 7:30 ~ 23:30 1,482 1,454
Sunny
E2S
2018-10-10 8:00 ~ 24:00 1,423 1,409
' Cloudy
ER%HR W
Formal-experiment 2018-10-11 7:30 ~ 21:30 1,306 1,287 Sunny
E2S
2018-10-12 7:30 ~ 21:30 1,274 1,254
' Cloudy
531 i
2018-10-13 10:30 ~ 21:30 (ERBELRE) 531 Su:ny
(Low battery)
ESN
-10- .00 ~ 24-: 1,260
2018-10-14 10:00 ~ 24:00 1,253 Cloudy

i
1. BFENSERE R TRENELTEEERNEMBaFILIAE, EitRLENRINERR SBENRD.
2. BEEEFREASIEIN, REMICRENFLRENIIER TR, WLRERERT —EFMW.

Notes:

1. Fewer photos were taken when the camera was in a low-battery and turned off automatically without indication.
2. The photography quality and battery life of the camera declined as the usage time increased, which somehow had an impact on the results.
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4 Image Identification / Recognition Methods

4.1 Manual Image Identification

Manual image identification is to distinguish the location, time,
and scene of each picture according to the image elements. It sees
an advantage in accurately interpreting and grasping key image
information to speculate the volunteer’s behavior and experiencing
scene. But it usually takes a very long time. Table 3 is a record of
behavior obtained through manual image identification, taking the
photos collected on October 9,2018 as an example. Unfortunately,
the volunteer’s commuting and other activities at that night were
not recorded because of the low battery. A total of 1,482 photos
were taken, of which 1,454 were valid.

VOLUME 7/ISSUE 2/ APRIL 2019
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Table 3: The volunteer’s behaviors throughout the day identified by manual image identification

Eia e R B (£8) B £ mBH B ($%) Eias £ R B (98)
Time Scene Number of Duration (min) Time Scene Number of | Duration (min) Time Scene Number of Duration (min)
photos photos photos
HITR AR 211:00 TEITALERA #415:00 BB A%
8:30 Getting ready 20 10 Ab’out 1‘100 Working in the 68 34 About 15.00 | ©0ing upstairs by 12 6
’ office i elevator
FITTH #1130 HITTHE [iRRLADIYN
i i 2 1 o i i 9 4.5 ingi 200 100
Going downstairs About 11:30 Going downstairs V:?rkmg in the
office
FeE % BiERE RERRHEK
i i ini £J17:00 i
Commuting 39 195 Going to the dining 2% 12 2 Going to get 7 35
hall About 17:00 | drinking water in
the corridor
sogo | EEAEH R ETAENA
- i i 6 3 i i 15 7.5 ingi 87 43.5
About 9:00 Going upstairs by Going upstairs by Working in the
elevator elevator office
ETEDA w200 | EFR R T
Working in the 104 52 About 12:00 Having lunch 34 17 Going downstairs 6 3
office by elevator
THHEZ HITTH# BIfERE
Communicating 12 6 Going downstairs 10 5 Going to the dining 15 75
and sealing the hall
files
w00 | MERFTRE EEAAZE EL NS
About 10:00 | Ging to the " 5.5 Going back to the 25 12.5 Going upstairs by 5 25
research institute office elevator
HIT L% #1230 LR EAE #118:00 ZREIR
Going upstairs 14 7 Ab’out 1‘230 Going upstairs by 12 6 About 18:00 Having dinner 29 14.5
’ elevator i
THFEE LR A YN FITTHE
Dealing with 13 65 Working in the 184 92 Going downstairs 13 65
administrative ’ office )
affairs
HHTTH srago | FEETE EENAE
Going downstairs 7 3.5 About 14:00 Going downstairs 7 35 Going back to the 30 15
by elevator office
BIEMEAE FTEN 4 #18:30 e LAk
i 20 10 inti 6 3 — i i 10 5
Going to the Printing About 18:30 Going upstairs by
finance office documents elevator
THIEE AEEEAIFES
Dealing with Going to the [CRRTALIYN
administrative 27 13.5 administrative 16 8 Working in the 298 149
affairs office and dealing office
with paper files
BEISAE TERBEEIK
Going back to the Going to get
10 5 6 3
office drinking water in — .
the corridor MHEERE, RCRIEZHER,
No more information was collected because the
e AS 1 BEAASE battery had run out.
Going upstairs by 8 [ Going back to the 33 16.5

elevator

office
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4.2 Image Recognition with Computer Vision API
By using Python-based Computer Vision API, various labels

% %

could be recognized from the photos, such as “trees,” “cars,” “water,”

2 <

“paving,” “computers,” “mobile phones,” “pens,” “children,” and
“crowd.” An ongoing behavior or an invariant location can be
derived from the repeatability of the labels. Although this automated
identification leads to a great efficiency improvement, it helps
little interpret the scenes or the volunteer’s behaviors. At the same
time, the unfocused recognition of image elements often generates
large-size analyses and blurred labels (such as “remote,” “laying,”
“standing,” “black,” and “white”) that require an additional manual

image identification to verify (Fig. 3).

4.3 Color Calculation in Matlab

Matlab is primarily used to identify the ratio of the part in blue
(sky) / green (greenery) of an image (Fig. 4) to distinguish whether
the picture is taken indoors or outdoors. Comparing the ratio of
blue or green in a single picture is of less meaning, while identifying
the time periods in which the ratio of blue or green is relatively
high may indicate that the volunteer was staying outdoors or
accessing to greenery, which can be used as a cross-checking with
the manual image identification result. In this experiment, the blue
color represented the sky and a picture with a high blue ratio (>

60%, preliminarily) was regarded as photographed outdoors, after

BA THEAHA RS TAPHRBILE R
Photos

Information identified by Computer Vision API

ATIRBIER

Information obtained by manual image identification

“outdoor” “man” “street” “riding” “bus” “car”
“side” “road” “board” “red” “tree” “view” “city”
“boy” “standing” “parked”

BfiE]; 2018/10/09 12:10 BEX. Bx. WA Eiy;

o R PobEER. ATE. BR;
= KR AL EH;
Time: 2018/10/09 12:10 BRX

Location: campus path
Scene: going to the dining

Sky, cloud, tree, grassland;

Outdoor pavement, sidewalk, building;
hall Passerby, vehicle;

Daylight

“indoor” “food” “table” “plate” “sitting” “desk”
“holding” "black” “laptop” “people” “bowl”
“woman” “man” “white”

fitiEl. 2018/10/09 12:40 'Y, ’F;
e, RE ST R
£ 2R N |

Time: 2018/10/09 12:40
Location: dining hall
Scene: having lunch

Food, chopsticks;
Table, indoor pavement;
Wall, window

3. HEHNESHTAPIFIA

“indoor” “person” “table” “sitting” “computer”
“holding” “desk” “paper” “keyboard” “laptop”
“man” “phone” “remote” “laying”

TIRBINR—EE R
fitiEl: 2018/10/09 15:40

BiK. RiR. XE; paGlrES=:)
R DAE FHl;
= TE 275 3. Comparison of the

Time: 2018/10/09 15:40
Location: office

.. BRI
Computer, mouse, office supplies;
Cellphone;

information acquisition
by image recognition
with Computer Vision

Table; e APl and manual image
Wall, door, bright light

Scene: working

, TR

identification to the

W © 3K

same photos

028
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1
0.9
0.8
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0.4
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0.1

0

FERRERE Access to greenery [T
$Efih S5 Stay outdoors -

The ratio of blue
color and green color
identified through the
color calculation in
Matlab

5. Comparison of the
information acquisition
by manual image
identification and the
color calculation in
Matlab

bl

10B8H
October 8

I |

10B9H
October 9

108108
October 10

] |
] |

10B11H
October 11
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ZELLH: 04828

Green color ratio: 0.4828
HEE LG 0.3152

Blue color ratio: 0.3152

M

KELLH: 01964
Green color ratio: 0.1964
HE Lk 0.2525

Blue color ratio: 0.2525

ZELLfl: 00728

Green color ratio: 0.0728
LBl 0.6360

Blue color ratio: 0.6360

ZELLH: 01740
Green color ratio: 0.1740
LG 0.2524

Blue color ratio: 0.2524

o
w

MR Access to greenery
#fm 5h Stay outdoors [l

LR Access to greenery
A8 79 Stay outdoors [l

LR E Access to greenery
248 24 Stay outdoors [l

MatlabZReiRBIZER
Color calculation in Matlab

ATRBIISIE
Analysis by manual image identification

IRBITERR

Invalid information
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L

10B12H
October 12

108138
October 13

108148
October 14

RELLH

Green color ratio

EELL)

Blue color ratio

e
Access to greenery
b P 5h

Stay outdoors

Bt flEF60%, BATIRFIFREIRG N
EIMART B
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which the time outdoors could be calculated (in orange in Fig. 5).
Analyses showed that 8 of the 29 outdoor time periods identified
by Matlab were denied with manual image identification; 13 of the
37 identified outdoor scenes did not see a high ratio of blue. The
discrepancies might be caused by the following reasons: one is that,
due to the position and shooting angle of the camera, not so much
sky was photographed; the other is that Matlab cannot distinguish
the sky from other blue objects, and more errors might appear
when the visibility is low or the sky turned dark. Therefore, this
method is more suitable for analyzing images shot in daytime and
without interference. The recognition results need to be verified by

other methods.

4.4 Comparison of the Methods

Among the three methods outlined above, manual image
identification relies highly on the volunteer’s memory and manual
identification on time, place, and scene. Its high credibility makes
it often be used as a reference or verification for the other two
automated methods. However, the process of manual image
identification often costs a great amount of time. Image recognition
with Computer Vision API sees efficiency and a certain degree of
accuracy for specific label criteria, such as whether the photo is
photographed outdoors or includes any person. It is applicable
to large-scale analysis work, but an additional technical support
is needed because of its limited recognition spectrum. Color

calculation in Matlab also sees limitations in its recognition
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6. The volunteer's timeline
on September 3, 2018.

7.  Thevolunteer’'s
behaviors included
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spectrum and susceptibility to external factors such as shooting
angle and sky visibility. In summary, the latter two automated
technologies need an improvement in recognition accuracy.

This study adopted the manual image identification method for
the analyses of individual behavior characteristics due to the high

accuracy of manual image identification results.

5 Individual Behavior Analysis

5.1 Time Use and Behavioral Characteristics
The image dataset of individual behavior recorded with the
wearable camera is built upon time information. Since the photos
were taken in every 30 seconds, the volunteer’s behaviors can
be interpreted according to the consequence of the pictures and
the frequency of elements, profiling a timeline of the individual’s
behavior. The recorded data in pre-experiment (from 9:30 to 22:30
on September 3, 2018) is listed in Figure 6. The start and end time
of each behavior and the duration of it were identified by counting
the number of images reflecting a same behavior or a scene.
Depending on the duration, frequency, and continuity of
various elements appeared in the pictures, the behavior information
can be classified into five categories: working, commuting, mealing,

social, and relaxing (Fig. 7). The volunteer’s time use on each
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8. Thevolunteer's time
use on September 3,
2018.

9. Thevolunteer's time

5.2 Movement Path and Scenes
According to building and road information in the images,

use from October 8 to
14,2018.

the volunteer’s movement path can be identified, and by
counting the number of images of a certain path or in a certain
place, the duration in each place can be deduced. Figure 10
presents the volunteer’s movement path and activities on
September 3,2018. A behavioral map and the spatial axis were
formed to visualize the volunteer’s movement and scenes.

The volunteer’s daily reaching realm and movement lines
are shown in Figure 11. The thickness of the line indicates the
frequency of the routes — the thicker the line is, the higher
frequency it is recorded. It can be concluded that the most
repeated paths during the week were the commuting routes,
which showed a strong regularity; the routes for lunch / dinner
varied one or two times; the routes for relaxing saw a higher
variety. The routes for commuting, working, and mealing, as
daily necessities, showed a higher regularity because one is used
to choose the shortest path. At the same time, one’s route choice
for relaxing is largely of impulsive uncertainty and personal
preference, which often contains extra stops or detours. For
example, on weekends, one often picks a way home with busy

shops along, instead of the shortest path he / she commutes on
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working days. In this study, the movement paths in the volunteer’s
relaxing activities defined her reaching realm in the experiment
site. Similarly, as the realm expands, an individual’s movement
path can be depicted at a city scale; however, a city-scale research
often has to consider the impact of different transportation modes

on individual’s behaviors, which is not expanded in this research.

6 Summary and Review

The large-sized image database of individual behavior recorded
with wearable cameras is built upon rich digitalized spatiotemporal
information. It works as a basis for studying individual activities
in a form of “lifelog.” Through methods including manual image
identification, image recognition with Computer Visual APL, and
color calculation in Matlab, specific time, locations, and scenes
can be identified to form and visualize the volunteer’s behavioral
timeline, time use, and movement path. It profiles an overall

behavioral pattern that not only demonstrates the effectiveness of
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image database in analyzing interactions between individuals and
urban space, but also illustrates a new application of wearable
cameras in built environment studies.

Limited by the fundings, this experiment only invited
one volunteer, lacking a check experiment. However, several
conclusions and lessons can be drawn from the volunteer’s
wearing experience and the exploration in image analysis. Firstly,
the shortages of the Narrative Clip 2 wearable camera include
short battery life, occasional equipment failure, poor photography
quality in dark conditions, unstable shooting along moving, and

file missing. In future experiments, the use of wearable cameras
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should be standardized to ensure the device working and the
photography quality. Secondly, given that the wearable camera does
not record coordinates, location data needs to be read manually. A
combination with wearable GPS recording can efficiently facilitate
the acquisition of geographical information.

7 Prospects of Wearable Cameras

With the advent of big data, large-group studies on built
environments with supports from formal element data of the
built environment and Internet data have provided a reference for
interpreting urban problems through the lens of big data and laid
a theoretical foundation. However, it is still difficult to apply big
data at an individual level. Wearable cameras provide a possibility
to collect massive individual data and to digitize the individual
behaviors in an electronic form of “quantified self,” promoting
the continuous and multidimensional collection of individual
behavior data. It also echoes the shift from the digitalization of
urban environmental data towards the digitalization of individual
behavioral data (Fig. 12, 13). At the same time, the information
level of individual behavior will also promote innovation in
research methods and technologies. With this drift, research based
on individual perception will turn into quantitative studies.

This study proves the possibility and effectiveness of using
wearable cameras for studying the interactions between individual
behavior and the built environment through an exploration
on the technical roadmap. Wearable cameras and the collected
images provide technical support to future research on space and
individual behaviors. Moreover, they can be applied to urban spatial
investigation and assessment for further research on user behavior,
site usage tracking, and the evaluation of urban design projects. It is
particularly promising to apply wearable cameras into the studies on
the interaction between individuals and urban space. LAF
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