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Abstract

Zones, cells, and parcels have long been regarded as the main units of analysis in urban modeling.

However, only limited attention has been paid to street-level urban modeling. The emergence of

fine-scale open and new data available from various sources has created substantial opportunities

for research on urban modeling at the street level, particularly for modeling the spatiotemporal

process of urban phenomena. In this paper, the street is adopted as the spatial unit of an urban

model, and a conceptual framework for such modeling based on cellular automata is proposed.

The validity of the proposed framework is verified by an empirical application to the urban space

within the Fifth Ring Road in Beijing from 2014 to 2018. The results show that the density of

points of interest simulated by the cellular automata model for 2018 is basically consistent with

the actual distribution according to direct observation, and there is no significant difference in the
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proportion of high, medium, and low points of interest density streets between different ring

roads. In addition, the deviation rate and Kappa index are 0.1171 and 0.97, respectively, indicating

the proposed model can replicate historical patterns well and predict the transition of points of

interest density at the street level. Subsequently, we considered three scenarios, adopting 2018 as

the base year and using the proposed model to simulate the distribution of points of interest

density in 2022 and the changes in points of interest density from 2018 to 2022. The conceptual

framework and empirical application also provide support for urban planning and design based on

the integration of linear public space and big data.
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Introduction

Urban modeling has been applied for several decades and is widely recognized as an

effective analytical tool to support urban planning and policy-making (Deal and Schunk,

2004; Eeftens et al., 2013; Hu et al., 2018). The scope of research on traditional urban

modeling includes both the macro scale (e.g. cities and zones) and the micro scale (e.g.

blocks, parcels, and cells). To respond to the increasing challenges faced by urban devel-

opment, such as the increasing individualization of society (Wegener, 2011), air and noise

pollution (Eeftens et al., 2013; Hadzi-Nikolova et al., 2012), health and energy issues

(Jones et al., 2007), crime and safety (Jiang et al., 2018), and an increasing demand for

high-quality urban life (Rinner, 2007), the trend in urban modeling is moving toward the

micro level. However, modeling urban phenomena at the micro scale continues to face

numerous challenges, such as limitations on high-resolution data availability, spatial

representation, the speed with which researchers can respond to emerging urban prob-

lems, the extent to which a model can be replicated, and how a model can be shared

with others (Crooks et al., 2008; Filatova et al., 2013; Wegener, 2011). Previous studies

have made efforts to address one or more of these challenges (Crooks et al., 2008;

Wegener, 2011). Advances in quantitative methods and emerging big geo-data have

created substantial opportunities for quantifying indicators and modeling urban phenom-

ena at the micro level (Hao et al., 2015; Tang and Long, 2019). As key components of

urban public space and the built environment, streets have been regarded as important

carriers with respect to supporting daily living. Streets are considered to represent a fine

spatial scale characterized by directly visible and perceptible spaces in a person’s daily

life that can significantly affect the physical activities and emotional states of individuals

living in urban areas. Urban modeling for streets can potentially enrich the semantics of

urban public space, which can help planners and authorities understand the patterns

underlying the heterogeneity of such space and reveal the impacts of various factors

on public space quality.
The paper is organized into six sections. Following the introduction, this paper reviews

typical urban models and studies related to urban modeling for streets in the “Literature

review” section. In the “Practical requirements for street-level urban modeling” section, we

present the practical requirements for street-level urban modeling. In the “Method for the

urban modeling of streets” section, the conceptual framework and modeling design of an

urban model for streets are proposed. In the “Empirical application of the model in Beijing”
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section, an empirical application to an urban space within Beijing’s Fifth Ring Road is

conducted to verify the feasibility of the proposed framework. The last section provides

concluding remarks and discusses potential applications while also noting the study’s

limitations.

Literature review

Typical urban models

Zones, cells, and parcels have been regarded as the primary units of analysis in urban

modeling over the last half century. We have conducted an extensive literature review

and the urban models that have appeared since 1964 are listed in Table 1. A large

number of urban models have been developed and used in assessing the socioeconomic

Table 1. Typical urban models.

Model name Modeling unit/scale Modeling method Key publication

Alonso’s Land Rent

Model

City Location and land rent theory Alonso (1964)

IRPUD Zone of urban

region

Discrete choice modeling Wegener (1982)

TRANUS Subzone of a city Spatial input–output method Delabarra et al. (1984)

Delabarra and Rickaby

(1982)

POLIS Zone based on

census tract

Spatial interaction modeling

Discrete choice modeling

Prastacos (1986)

MEPLAN Zone Spatial input–output method Echenique et al. (1990)

CUFM_01 Developable land

unit

Model based on allocation rules Landis (1994)

Metrosim Zone Discrete choice modeling Anas (1994)

MUSSA Zone Discrete choice modeling Martinez (1996)

SLEUTH Grid cell Cellular automata Clarke et al. (1997)

UrbanSim Multi-scale Discrete choice modeling

Microeconomic modeling

Waddell (2002)

CUFM_02 Grid cell Model based on allocation rules Landis and Zhang

(1998)

DELTA Zone Discrete choice modeling Simmonds (1999)

ILUTE Parcel

Household

Micro agent interaction modeling Miller and Salvini

(2001)

PECAS Zone Spatial interaction modeling

Spatial input–output method

Hunt and Abraham

(2003)

TLUMIP Zone Spatial input–output method Weidner et al. (2007)

Relu-Tran Subzone of a met-

ropolitan region

Discrete choice modeling Anas and Liu (2007)

BUDEM Grid cell Cellular automata Long and Mao (2009)

GeoSOS Multi-scale Cellular automata

Agent-based modeling

Li et al. (2011)

Agent iCity Parcel

Household

Agent-based modeling Jjumba and Dragi�cevi�c
(2012)

MATSim Macro scale Agent-based modeling Armas et al. (2016)

FLUS Multi-scale Cellular automata Liu et al. (2017)
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impacts of urban planning or public policies at the macro level, such as the city, zone, or
subzone (Wan and Jin, 2014). However, these models are not well suited for addressing
micro-level urban processes or small-scale urban problems (Simmonds et al., 2013). With the
development of urban modeling algorithms, cellular automata (CA) has become increasing-
ly popular in the field of urban modeling (Kong et al., 2017; Sante et al., 2010). Studies that
employ CA to model urban development and land use are abundant in the literature
(Almeida et al., 2008; Barredo et al., 2003; Feng and Liu, 2013; Li and Yeh, 2000).
Compared with traditional urban models, the CA model adopts a bottom-up simulation
process and can capture urban changes in small-scale urban spatial units through simple and
flexible transition rules. Although the CA model can effectively simulate rich urban change
dynamics at the micro level, most previous CA studies focus on regular grid cells, such as
500meters by 500meters (Long and Mao, 2009) or 1 kilometer by 1 kilometer (Liu et al.,
2017). In the diverse application of CA modeling, models based on cells on a grid with exact
spatial resolution are considered universal. However, the conventional raster-based CA
models are sensitive to the size of the grid cells and how they are configured, and thus
have limited power to simulate the real world, which has more complex land use layouts and
street networks. Vector-based CA models were later developed to simulate the process of
urban change with irregular polygons as cells to represent more realistic urban phenomenon
(Shen et al., 2009; Stevens and Dragi�cevi�c, 2007). However, both raster and vector CA
models have limitations in incorporating human decision behaviors (Arsanjani et al.,
2013). With the development of complexity science and artificial intelligence, agent-based
modeling (ABM) has been applied to simulate complex changes in the urban system (Chen
et al., 2010). ABM involves the process of adaptation and decision-making of multiple
individual agents at the micro level, which better reflects the dynamic relationship between
urban changes and the direct or indirect reactions of different agents. The integration of CA
models with ABMs has been discussed by various scholars (Hewitt et al., 2014; Li et al.,
2011). These urban models tend to simulate urban phenomena at the micro level. However,
few attempts have been made to investigate the wider dynamics of the urban system at a
finer scale. Streets, as the traffic carrier and a key form of public space in a city, are playing
an increasingly important role in urban studies. However, our comprehensive literature
review indicates that previous studies on urban modeling have made little effort to link
CA-ABM models with finer urban spatial units, such as urban streets.

Studies on street-level urban modeling

In the 1960s, a series of urban research pioneers, represented by Jacobs (1961) and Lefebvre
(1962), initiated the discussion of the street space and its social and economic effects.
Subsequently, experts in the field of design began paying attention to the spatial character-
istics of streets, street design techniques, and how to use streets to improve urban quality
and vitality. Whyte (1980), Lynch (1984), Gehl (1987), and Montgomery (1998) made qual-
itative inductions from different perspectives. Researchers have also investigated quantita-
tive modeling for urban streets in a limited number of studies for a variety of objectives. For
example, Penn et al. (1998) proposed a new type of “configurational” road network model,
suggesting that the flow of vehicles and pedestrians could be better controlled through
configuring the street grid, building height, and street width. Desyllas et al. (2003) quanti-
tatively modeled “natural surveillance” using visibility graph analysis for a traditional street
network and a modern university campus, and their model played a significant role in
demonstrating the importance of natural surveillance in crime prevention through environ-
mental design. Shen et al. (2009) took the effects of urban planning into account in a vector-
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based geographic automata model, and focused on simulating the land use patterns on both
sides of streets.

During the last 30 years, the space syntax model has been developed to provide important
computational support for analyzing spatial relationships within a street network (Hillier
and Hanson, 1984; Hillier et al., 1987). Spatial syntax has been applied to pedestrian model-
ing (Hillier et al., 1993; Koohsari et al., 2016) and street design (Choi et al., 2006; Kim and
Sohn, 2002). Space syntax considers the street layout and configuration, focusing on the
spatial aspect of streets to estimate where people can move and where facilities can be best
located. In relation to street measurement, the space syntax method is primarily used to
estimate spatial and socioeconomic characteristics. Space syntax attempts to describe the
structure of the street network and to explain human behavior from the perspective of
spatial configuration. Most such studies address issues related to the spatial and socioeco-
nomic patterns of streets, but few have linked the method with dynamic changes over time.

The emergence of open and new data available from various sources has created signif-
icant opportunities for urban modeling research at the street level, particularly for modeling
the spatiotemporal process of urban phenomena. In recent decades, rapid changes in record
digitization, network expansion, and society computerization have created a large number
of geo-data with dynamic spatiotemporal features relevant to street functions and forms
(Glaeser et al., 2018). With the rise of big geo-data, related studies such as those evaluating
street characteristics and examining the relationship between street characteristics and urban
phenomena are adequate to support further urban modeling of streets (Gan et al., 2018;
Long and Liu, 2017). Tang and Long (2019) measured the characteristics of Hutongs, typ-
ically representative of historical streets in Beijing, from the perspectives of greenery, open-
ness, enclosure, street wall continuity, cross-sectional proportion, and stay willingness.
Other than modeling street characteristics, how people behave on the streets also aroused
the research interest of scholars (Potdar and Torrens, 2019; Torrens, 2014). In addition, the
emerging big geo-data have created a great opportunity for measuring previously unmea-
surable characteristics of streets (Ewing and Handy, 2009) and to examine the previously
unclarified relationship between street characteristics and urban phenomena.

Practical requirements for street-level urban modeling

Urban observers and critics have extensively investigated streets in a qualitative and narra-
tive manner. However, limited attention has been paid to street-level urban modeling. On
the one hand, because of the laborious, costly, and time-consuming nature of field surveys, it
is difficult for researchers to obtain sufficient attribute data on the urban street space for
extensive coverage. On the other hand, restricted by the cognitive limitations of the rapid
development of urbanization and insufficient attention to the micro environment, research-
ers often use an urban unit with coarse granularity to represent the street environment,
which in reality displays a richer array of connotations. In addition, urban planners or
policymakers must address numerous policy/planning goals (e.g. higher GDP, higher
employment rate, better air quality, better urban services). As a fundamental urban com-
ponent, streets influence the quality and vitality of public spaces and the physical activities
and psychological perceptions of the people that live in them. One important means to
achieve these goals is to plan or design the particular form/characteristics of streets.
Developing a comprehensive body of knowledge on streets is becoming increasingly mean-
ingful. Recent advances in quantitative morphological tools, such as space syntax and deep
learning, have provided new ways of analyzing street elements. New street data, such as
mobile phone traces, points of interest (POIs), and street view pictures, offer novel means to
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measure streets at a finer scale (Long and Liu, 2017). Street big data are easier to access than

traditional geo-data (e.g. land use maps at the parcel level, survey data in gated communi-

ties). The rise of big data makes urban modeling for streets feasible (Harvey and Aultman-

Hall, 2016).
The rapid changes in the city have also resulted in an urgent need for planners and

policymakers to perceive and evaluate problems in street space within large-scale urban

areas in a more efficient and convenient way. Because street-scale data can be updated

per hour, day, or month, urban modeling for streets can be expected to respond to emerging

urban challenges in a timely manner. For example, a street-level flood model can be quickly

constructed and updated to monitor and diagnose urban rain and flood problems per hour

by aggregating urban flood pictures generated through social media and by urban sensor

systems. Additionally, urban modeling for streets can provide good support to specific

urban planning/policy tasks, such as urban regeneration, historical street conservation,

parking pricing policy, and urban poverty detection.
In addition, urban modeling on the street level can integrate land use and transportation

systems easier than urban models that focus on areal units. Streets are where urban daily life

occurs and the channels that connect origins and destinations. At the micro level, land use

and the transportation system can co-exist in a single street unit, and theoretically, it is easier

to integrate these two systems within one street unit.

Method for the urban modeling of streets

Conceptual framework

We propose a conceptual framework for a government and public participation cellular

automata model for streets (GPCAS) to simulate street situations and their changes

(Figure 1). There are three modules in GPCAS: a street measurement module, a street-

CA module, and a government and public participation module.
Previous studies on the measurement of street attributes propose various variables, most

of which are based on the 5Ds, namely density, diversity, design, distance, and destination

accessibility (Ewing and Handy, 2009; Saelens et al., 2003; Yin, 2017). As these studies

confirm, the 5Ds are the core paradigm in street measurement. However, these aspects of

Figure 1. Conceptual framework of urban modeling at the street level.
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street measurement do not capture a comprehensive view of the street environment. As
important components of the built environment, streets display values across various dimen-
sions, including but not limited to aesthetics, space, traffic, and public health. Based on
previous studies on the 5Ds (Cervero and Kockelman, 1997; Ewing and Cervero, 2010;
Long and Liu, 2017; Tang and Long, 2019), other indicators, such as vibrancy (Chen
et al., 2019), quality (Tang and Long, 2019), traffic (Jiang et al., 2018), and emergency
events (Helderop and Grubesic, 2019) are proposed to measure and evaluate street charac-
teristics. Indicators developed according to big geo-data (e.g. POIs, buildings, street view
pictures, social media data, mobile phone traces) are presented in Table 2.

Next, based on Feng et al. (2011) and Long and Wu (2017), the conceptual model of the
proposed street-CA is expressed as follows

Vtþ1
i ¼ f Vt

i ;Factors; Neighbori;Constrain; Stoch
� �

(1)

where Vi
tþ1 and Vi

t are states of street i at time tþ 1 and t, respectively, f is the transition
function, Neighbori is the neighborhood influence of street i, Factors are the indicators
related to the state transition of street i, Constrain is the constrained condition on street
state transition, and Stoch is a stochastic disturbance representing accidental errors or urban
uncertainty. In the conceptual model, street state, neighborhood influence, and factors
related to state transition are outcomes of the street measurement. Constrain refers to com-
prehensive constraints generated by the government.

In the government and public participation module, the government and the public
participate in urban modeling by expressing their opinions on the street state transition
(Vancheri et al., 2008). Two types of agent are embodied in our proposed urban modeling
for streets: the government agent at an upper level and the public agent at a lower level. The
decision-making behavior of the government agent is to formulate constraints and deter-
mine factors that guide the development direction, scale, and layout of the streets. The
public agents exert an effect on the influencing factors by their spatial choice behaviors.

Model design

A CA model is well known for having several basic elements, including cells, cell states,
neighbors, constrained conditions, and transition rules. In the proposed model, a street, as a
linear geometry, is defined as a cell. The cell state is represented by the street function
density, which is proxied as POI density on both sides of the street. Neighbor refers to
other streets that are located within a certain buffered space of the target street. The neigh-
borhood effect is calculated as the average POI density of neighbors. The total number of
POIs is included in the model as a constrained condition, which controls the number of
simulated POIs when the model runs. During the iteration, the model will not stop until it
reaches the constrained conditions.

In addition, the cell state in the proposed model is not static, but dynamic and changes
over time under the impact of the transition rule. Therefore, the transition rule of the
simulation contains the time interval, the cell state of the last iteration, the change in
each iteration of the cell state, the transition probability, and the stochastic disturbance,
which is shown in equation (2). Specifically, (a) the time interval of the iteration can be set to
a specific period of time, such as one day, one month, or one year. (b) The change in each
iteration refers to the average variation of POI density per time interval from the initial year
to the target year. (c) The transition probability is calculated by binary logistic regression
based on equations (3) and (4). Equation (3) is used here to identify the transition
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Table 2. Main street indicators and data sources.

Aspect Street indicator Data source

Density Population density

Road junction density

Building area density

Population census

Mobile phone traces

Location-based services data

POIs

Buildings

Diversity Urban function mix POIs

Land use diversity Land use maps

Design Street main function

Street length

Street width

Pavement material

Street wall continuity

Ratio between average building height

and street width

Whether the motorized/nonmotorized

lane is separate

Proportions of each object category,

such as buildings, roads, trees, cars,

pavement, commercial windows

POIs

Road networks

Buildings

Land use maps

Street view pictures

Distance Distance to bus station POIs

Distance to subway station

Distance to railway station

Distance to airport

Destination accessibility Distance to city center POIs

Distance to central business district

Distance to urban subcenters

Distance to commercial complex

Vibrancy Economic vibrancy Economic census

Economic section in travel

survey

Web comments (e.g. Da Zhong

Dian Ping)

Social vibrancy Location-based services data

Street view pictures

Web comments (e.g. Da Zhong

Dian Ping)

Quality Openness Street view pictures

Enclosure

Willingness to stay

Urban informality score

Traffic Road class

Speed limited

Traffic flow

Travel survey

Taxi tracing

Urban fundamental geographic

information system

Emergency event Urban flood

Traffic accident

Public media

Social media

Traffic broadcast

POI: points of interest.
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probability and equation (4) is applied to determine the weights of the influencing factors
listed in Table 2. Influencing factors, as independent variables, are measured in the initial
year, and the dependent variable (either 0 or 1) denotes that the change status of the POI
density is either “increasing” or “decreasing” from the initial year to the target year. (d) The
stochastic disturbance represents the uncertainty of the urban system, which is a random
number ranging from 0.5 to 1.5 to control the speed of actual change in POI density. We can
express the relationships as follows

Vtþ1 ¼ Vt þ Vchange � pi � Stoch (2)

pi ¼ 1

1þ e�si
(3)

si ¼ contþ w1 � X1 þ w2 � X2 þ � � � þ wn � Xn þ wN � neighbori (4)

where Vt is POI density of the last iteration, Vchange is the average variation of POI density
per time interval from the initial year to the target year, pi is the transition probability, Stoch
is the stochastic disturbance, si is the dependent variable (either 0 or 1), cont is the constant,
X is the influencing factor, w is the coefficient (weight) of the corresponding influencing
factor, and neighbori is the neighborhood effect.

To estimate the prediction, scholars frequently report measures that are derived from the
overall accuracy and Kappa index (Olmedo et al., 2015; Pontius and Petrova, 2010; Sante
et al., 2010; Ye et al., 2018). We use the deviation rate and the Kappa index to evaluate the
prediction capability of the proposed model based on the actual and predicted results, both
in the target year, which are expressed by the following equations

D ¼ 1

n

Xn

1

ypredictedi � yactuali

���
���

yactuali

(5)

Kappa ¼ðPo � PcÞ
ðPp � PcÞ (6)

where yactuali is the actual result for street i in the target year, ypredictedi is the predicted result
for street i in the target year, n is the number of streets, P0 is the observed correct propor-
tion, Pc is the expected correct proportion, and Pp is the absolute correct proportion.
A lower deviation rate value indicates strong agreement between the actual and predicted
results. The Kappa coefficient ranges from 0 to 1. The value closer to 1 represents higher
similarity between the simulation result and the actual result.

Empirical application of the model in Beijing

Study area

The empirical application focuses on an urban area within Beijing’s Fifth Ring Road with a
total area of 667 square kilometers (Figure 2). The urban space within the Fifth Ring Road
covers the main urban areas of Beijing, including Beijing central business district (CBD),
traditional houses, and ordinary residences in the Second Ring Road, where the population
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density is relatively high and employment opportunities, cultural activities, and entertain-
ment activities are plentiful.

Model parameters

In the model, we exclude the streets within historical protected areas from our sample
because the development within these areas is highly restricted by policies and laws. The
iteration time interval is set to one month. Considering that walking speed is 1.1meters per
second (Almodfer et al., 2017), the maximum distance that a person can travel on foot in
one and half minutes is approximately 100 meters. Therefore, the streets within a 100-meter
buffer zone from the centerline of the target street are selected as neighbors. The initial year
is set to 2014 while the target year is 2018. The independent variables used in the logistic
regression are all quantified using 2014 data. The binary dependent variable (either 0 or 1) is
determined based on the changes of POI density from 2014 to 2018, where 0 indicates an
increase in POI density and 1 indicates a decrease. Historical data are shown in Table 3.

The regression results for 2014–2018 are provided in Table 4. In the logistic regression,
the Nagelkerke R-squared can be used to measure the fraction of the total variation in the
dependent variable that is explained by the independent variable. However, this coefficient
of determination is usually not as high as that in linear regression. In addition, the overall
percentage is adopted to describe the accuracy of the prediction by comparing the actual
classification results with the predicted classification results. The Nagelkerke R-squared and
overall percentage of logistic regression in the paper are presented in Table 4. As shown in
the table, the coefficient of building area density is the largest, and accordingly, the transi-
tion probability will increase with the increased density of buildings. The variables of the
distance category are negatively correlated with the transition probability, indicating that
the increase in distance has a negative effect on transition probability.

Model evaluation

Considering the influence of stochastic disturbance in the simulation process, we simulated
the change 30 times continuously and calculated the average value as the result of the final
simulation. To further examine the accuracy of the CA model, a null model was established.

Figure 2. Location of study area. CBD: central business district.
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Specifically, we calculated the average number of POIs that increases or decreases from 2014
to 2018 and then assigned this value to the corresponding street to predict the POI density in
2018 based on 2014. In this paper, four methods based on both actual POI density and
predicted results in 2018 were applied to validate the performance of our proposed
CA model.

Table 3. Historical data from 2014 to 2018.

Data Year Maximum Minimum Average Source

POI density (number/

km2)

2014 9000.00 0.00 469.00 POIs derived from Gaode

Map2018 26,620.00 0.00 1360

Neighborhood effect

(number/km2)

2014 5033.00 0.00 465.00

Distance to subway

station (m)

2014 6295.86 0.00 1011.45

Distance to bus station

(m)

2014 1400.77 0.00 142.37

Building area density

(km2/km2)

2014 26.33 0.00 2.03 Building footprints derived

from Baidu Map

Distance to CBD (m) 2014 22,425.35 55.65 10,498.34 Land use map

Street length (m) 2014 2948.73 70.00 250.02 Road network derived

from Gaode MapStreet width (m) 2014 78.00 2.00 35.64

Road junction density

(number/km2)

2014 578.00 3.00 188.00

Data Year Value Source

Number of streets 2014 15,942 Road network derived

from Gaode Map

Number of POIs 2014 186,747 POIs derived Gaode Map

2018 558,226

Constrained total

number of POIs

2018 558,226

CBD: central business district; POI: points of interest.

Table 4. Variables in the logistic regression equation for 2014–2018 (B is the regression coefficient).

Variable B

Standard

error (SE) p Exp(B)

Street length 0.001514 0.000 0.000 1.002

Street width 0.014939 0.002 0.000 1.015

Road junction density 0.000105 0.000 0.820 1.000

Building area density 0.838204 0.047 0.000 2.312

Distance to CBD �0.000024 0.000 0.002 1.000

Distance to subway station �0.000059 0.000 0.160 1.000

Distance to bus station �0.000338 0.000 0.144 1.000

Neighborhood effect �0.000945 0.000 0.000 1.000

Constant 1.687570 0.170 0.000 5.406

Nagelkerke R-squared 0.127

Overall percentage 95%

CBD: central business district; SE: standard error.
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1. Direct observation. The actual POI density in 2018 was divided into three categories (low,
medium, and high) by using the natural breaks method. According to the range values of
the three categories, the CA result and the null model result in 2018 were assigned to the
corresponding categories (Figure 3). The actual POI density and the predicted result from
the CA model are generally consistent in terms of spatial distribution, while the result of
the null model simulation is substantially different with respect to high POI density
distribution.

2. Density proportion comparison. We calculated the proportion of the actual value and the
simulated values in the high, medium, and low POI densities between different ring roads
in 2018 (Figure 4). As shown in the figure, the proportion of the actual result and the CA
simulation result for the three categories is similar.

3. Deviation rate. The deviation rates of the CA model and the null model were calculated
by using actual POI density in 2018 and the predicted results in 2018 (Table 5).

Figure 3. POI density categorized by the same classification criterion in 2018. (a) Actual result, (b) CA
result, and (c) null model result. POI: points of interest.
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The deviation rate of the CA model is closer to 0, which is significantly smaller than that
of the null model (2.0931). For the CA model, the proportion of the number of streets in
the three deviation rate ranges of 0.01, 0.05, and 0.1 is much higher than that of the null
model.

4. Kappa index. Based on actual POI density and the predicted results both in 2018, we
marked the values of low, medium, and high POI density as 1, 2, and 3 and then calcu-
lated the Kappa index of the CA model and the null model using SPSS software
(Table 5). The Kappa index of the CA model is closer to 1 than that of the null
model, indicating higher similarity between the actual result and the simulated result of
the CA model.

Figure 4. Proportion of three types of POI density for actual and simulated results between different ring
roads in 2018. (a) Within the Second Ring Road, (b) between the Second and Third Ring Road, (c) between
the Third and Fourth Ring Road, and (d) between the Fourth and Fifth Ring Road. CA: cellular automata.

Table 5. Deviation rate and Kappa index of CA model and null model.

CA model Null model

Deviation rate Overall 0.1171 2.0931

Proportion of � 0.01 15.77% 2.48%

Proportion of � 0.05 74.99% 7.15%

Proportion of � 0.1 93.07% 12.54%

Kappa index 0.97 0.38

CA: cellular automata.
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Therefore, based on the verification of the four qualitative and quantitative methods, the
proposed model enables better replication of the historical laws to predict the transition of
POI density at the street level.

Future prediction based on three scenarios

Adopting 2018 as the initial year and 2022 as the target year, three scenarios were
considered to simulate the change of POI density, including (1) the trend development
scenario. This scenario is generated based on the assumption that the trend of change in
POIs from 2018 to 2022 stays the same as that between 2014 and 2018. Therefore, the
weights of the variables do not change. (2) The CBD-based development scenario. The
influencing intensity of CBD as a key feature is strengthened. Therefore, the weight of
distance to CBD is increased to �0.0001 while the others remain the same. (3) The
transit-oriented development (TOD) promotion scenario. The influencing intensity of
the subway station as a key feature is strengthened. Therefore, the weight of the distance
to a subway station is increased to �0.0001 while the weights of other variables are
fixed. In addition, we assumed that the change in the number of POIs from 2018 to 2022
is consistent with the change pattern from 2014 to 2018. Thus, the total number of POIs
in 2022 is 929,705. The parameters of the three scenarios are presented in Table 6.

Using the validated model, we predicted the POI density of streets in 2022 based on the
three scenarios (Figure 5). We calculated the number of three types of street within
500meters of the CBD and a subway station in the different scenarios. Compared with
the trend development scenario, with the increase in the influence weight of the CBD and the
subway station, the number of streets with high POI density increases from 33 to 36 within
500meters of the CBD, while the number of streets with high POI density increases rapidly

Table 6. Parameters of the three scenarios.

Parameter

Trend

development

CBD-based

development

TOD

promotion

Weight of influencing factor Street length 0.001514 0.001514 0.001514

Street width 0.014939 0.014939 0.014939

Road junction density 0.000105 0.000105 0.000105

Building area density 0.838204 0.838204 0.838204

Distance to CBD �0.000024 20.000100 �0.000024

Distance to subway station �0.000059 �0.000059 20.000100

Distance to bus station �0.000338 �0.000338 �0.000338

Neighborhood effect �0.000945 �0.000945 �0.000945

Initial year of simulation 2018

Target year of simulation 2022

Constrained total number of POIs in 2022 929,705

CBD: central business district; POI: points of interest; TOD: transit-oriented development.

Note: The bold weights are increased compared to the weights of variables in the logistic regression from 2014 to 2018,

while others keep the same weights for the variables between 2014 and 2018.
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Figure 5. POI density categorized by the same classification criterion in 2022. (a) Trend development,
(b) CBD-based development, and (c) TOD promotion. CBD: central business district; POI: points of
interest.
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within 500meters of the subway station (from 700 to 742). In addition, a small sample area
was selected to compare changes in POI density (Figure 6). As shown in the figure, the POI
density of certain streets close to the CBD and a subway station increases because of the
increase in the weight of the CBD and the subway station.

Conclusions and discussion

Concluding remarks

In this paper, we reviewed the applied urban models that are typically applied and found
that CA-based modeling for streets was less studied in the literature. Then, we proposed a
conceptual framework for urban modeling at the street level based on CA and verified the
validity of the proposed framework by running the model with empirical data for Beijing.
Four methods, including direct observation, density proportion comparison, deviation rate,

Figure 6. POI density of certain streets close to the CBD and two subway stations. (a) Streets close to
CBD in the trend development scenario, (b) streets close to CBD in the CBD-based development scenario,
(c) streets close to a subway station in the trend development scenario, and (d) streets close to a subway
station in the TOD promotion scenario. CBD: central business district; POI: points of interest.
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and Kappa index, were applied for validation of the proposed model using actual POI
density and predicted results, both in 2018. We found that the distribution of the simulated
POI density is basically the same as the actual distribution, that the street proportion of
three types of POI density displays no obvious difference, that the deviation rate is close to
0, and the Kappa coefficient is closer to 1. These outcomes indicate good agreement between
the actual results and the predicted results of the CA model. The prediction results are
consistent with the true values, which encouraged us to predict using three additional sce-
narios. We adopted 2018 as the initial year and used the proposed model to simulate the
distribution of POI density in 2022 and the change in POI density from 2018 to 2022. The
results reveal that the number of streets with high POI density increases with an increase in
the influence of distance to the CBD and a subway station.

Potential applications

Compared with previous urban models, the street-CA model focuses on street scale and
takes it as units of analysis, which reflects more realistic urban phenomenon, especially for
public spaces. This model is available for supporting actual refined urban projects, especially
urban renovation, urban micro-regeneration, community building, etc., helping explain
which factors have an impact on street function, thus contributing to a more targeted
and efficient solution to improve the overall development of street space. It should also
respond better to policy-making related to streets, since it can integrate and evaluate the
impacts of macro policies and specific planning schemes on urban street space, and simulate
multiple schemes reflecting various space development strategies. For urban planners and
designers, the model plays an important role in assessing the development potential of
streets under different scenarios.

Academic contributions

Based on classical theories of complex systems, a conceptual framework is constructed for
urban modeling at the street level that can be widely applied. The street considered as a
linear geometry is adopted as the spatial unit of the proposed CA-based urban model
compared to vector polygons in previous studies, whereby the model’s validity is verified
through an empirical application to urban space within Beijing’s Fifth Ring Road. The
spatial characteristics of a city on a fine scale could be reflected through street-level
urban modeling as opposed to models reflecting coarse spatial granularity. The street-
scale CA model has undoubtedly contributed to the fineness of urban modeling at the
linear scale, thus filling the gap in the current research. In addition, the proposed model
and its application provide empirical evidence for capturing features of urban change
dynamics by using emerging sources of big geo-data, which will strongly support the sim-
ulation of planning decisions and multi-scenario comparison. The conceptual framework
and empirical application also provide support for urban planning and design based on the
integration of linear public space and big data.

Potential limitations and future research

In our model, only the total number of POIs is considered as the constrained condition. In
future studies, more constraint factors should be introduced into the proposed model to
simulate POI density change, such as urban-planning management policies. In addition, an
agent-based model could be added to simulate urban agents for various activities based on
different urban policy scenarios. Relevant indicators of the space syntax model will also be
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taken into account in future studies. Other big data such as street view images and human
activity records using location-based services can capture spatial information with a lower
cost and larger spatial coverage. Therefore, these data can be used to represent street
functions and be combined with our model for the validation of CA urban modeling in
future studies.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or

publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or

publication of this article: We are grateful for the financial support of the National Science and

Technology Major Project of the Ministry of Science and Technology of China (No. 2017ZX07103-

002) and the National Natural Science Foundation of China (Nos. 51778319 and 71834005). We will

share the code and data used in this paper online at the Beijing City Lab’s website (https://www.

beijingcitylab.com/projects-1/52-modeling-streets/).

ORCID iD

Guowei Lyu https://orcid.org/0000-0002-5198-0059

References

Almeida CD, Gleriani JM, Castejon EF, et al. (2008) Using neural networks and cellular automata for
modeling intra-urban land-use dynamics. International Journal of Geographical Information Science

22(9): 943–963.
Almodfer R, Xiong SW, Kong XZ, et al. (2017) Pedestrian crossing speed patterns and running

frequency analysis at a non-signalized marked crosswalk: Quantitative and qualitative approaches.
Sustainable Cities and Society 34: 183–192.

Alonso W (1964) Location and Land Use: Toward a General Theory of Land Rent. Cambridge, MA:
Harvard University Press.

Anas A (1994) METROSIM: A Unified Economic Model of Transportation and Land-Use.

Williamsville, NY: Alex Anas & Associates.
Anas A and Liu Y (2007) A regional economy, land use, and transportation model (RELU-TRAN!):

Formulation, algorithm design, and testing. Journal of Regional Science 47(3): 415–455.
Armas R, Aguirre H, Daolio F, et al. (2016) An effective EA for short term evolution with small

population for traffic signal optimization. In: 2016 IEEE symposium series on computational intel-

ligence, Orlando, USA.
Arsanjani JJ, Helbich M and Vaz EDN (2013) Spatiotemporal simulation of urban growth patterns

using agent-based modeling: The case of Tehran. Cities 32: 33–42.
Barredo JI, Kasanko M, McCormick N, et al. (2003) Modeling dynamic spatial processes: Simulation

of urban future scenarios through cellular automata. Landscape and Urban Planning 64(3): 145–160.
Cervero R and Kockelman K (1997) Travel demand and the 3Ds: Density, diversity, and design.

Transportation Research Part D: Transport and Environment 2(3): 199–219.
Chen TT, Huid ECM, Wu JM, et al. (2019) Identifying urban spatial structure and urban vibrancy in

highly dense cities using georeferenced social media data. Habitat International 89: 1–11.
Chen YM, Li X, Liu XP, et al. (2010) An agent-based model for optimal land allocation (AgentLA)

with a contiguity constraint. International Journal of Geographical Information Science 24(8):

1269–1288.
Choi AS, Kim YO, Oh ES, et al. (2006) Application of the space syntax theory to quantitative street

lighting design. Building and Environment 41(3): 355–366.

18 EPB: Urban Analytics and City Science 0(0)

https://orcid.org/0000-0002-5198-0059
https://orcid.org/0000-0002-5198-0059


Clarke KC, Hoppen S and Gaydos L (1997) A self-modifying cellular automaton model of historical

urbanization in the San Francisco Bay area. Environment and Planning B: Planning and Design

24(2): 247–261.
Crooks A, Castle C and Batty M (2008) Key challenges in agent-based modeling for geo-spatial

simulation. Computers, Environment and Urban Systems 32(6): 417–430.
Deal B and Schunk D (2004) Spatial dynamic modeling and urban land use

transformation: A simulation approach to assessing the costs of urban sprawl. Ecological

Economics 51(1–2): 79–95.
Delabarra T, Perez B and Vera N (1984) TRANUS-J: Putting large models into small computers.

Environment and Planning B: Planning and Design 11(1): 87–101.
Delabarra T and Rickaby PA (1982) Modeling regional energy-use: A land-use, transport, and energy-

evaluation model. Environment and Planning B: Planning and Design 9(4): 429–443.
Desyllas J, Connoly P and Hebbert F (2003) Modeling natural surveillance. Environment and Planning

B: Planning and Design 30(5): 643–655.
Echenique MH, Flowerdew ADJ, Hunt JD, et al. (1990) The MEPLAN models of Bilbao. Transport

Reviews 10(4): 309–322.
Eeftens M, Beekhuizen J, Beelen R, et al. (2013) Quantifying urban street configuration for improve-

ments in air pollution models. Atmospheric Environment 72: 1–9.
Ewing R and Cervero R (2010) Travel and the built environment. Journal of the American Planning

Association 76(3): 265–294.
Ewing R and Handy S (2009) Measuring the unmeasurable: Urban design qualities related to walk-

ability. Journal of Urban Design 14(1): 65–84.
Feng Y and Liu Y (2013) A heuristic cellular automata approach for modeling urban land-use change

based on simulated annealing. International Journal of Geographical Information Science 27(3):

449–466.
Feng YJ, Liu Y, Tong XH, et al. (2011) Modeling dynamic urban growth using cellular automata and

particle swarm optimization rules. Landscape and Urban Planning 102(3): 188–196.
Filatova T, Verburg PH, Parker DC, et al. (2013) Spatial agent-based models for socio-ecological

systems: Challenges and prospects. Environmental Modelling & Software 45: 1–7.
Gan X, She T and Long Y (2018) Understanding urban informality in street built environment com-

bining manual evaluation with machine learning in processing the Beijing Old City’s street view

images. Time Architecture 1: 48–54 (in Chinese).
Gehl J (1987) Life Between Buildings: Using Public Space. New York: Van Nostrand Reinhold.
Glaeser EL, Kominers SD, Luca M, et al. (2018) Big data and big cities: The promises and limitations

of improved measures of urban life. Economic Inquiry 56(1): 114–137.
Hadzi-Nikolova M, Mirakovski D, Ristova E, et al. (2012) Modeling and mapping of urban noise

pollution with SoundPLAN software. International Journal for Science, Technics and Innovations

for the Industry MTM (Machines, Technologies, Materials) 6(5): 38–42.
Hao JW, Zhu J and Zhong R (2015) The rise of big data on urban studies and planning practices in

China: Review and open research issues. Journal of Urban Management 4(2): 92–124.
Harvey C and Aultman-Hall L (2016) Measuring urban streetscapes for livability: A review of

approaches. The Professional Geographer 68(1): 149–158.
Helderop E and Grubesic TH (2019) Streets, storm surge, and the frailty of urban transport systems: A

grid-based approach for identifying informal street network connections to facilitate mobility.

Transportation Research Part D: Transport and Environment 77: 337–351.
Hewitt R, Van Delden H and Escobar F (2014) Participatory land use modeling, pathways to an

integrated approach. Environmental Modelling & Software 52: 149–165.
Hillier B and Hanson J (1984) The Social Logic of Space. Cambridge: Cambridge University Press.
Hillier B, Hanson J and Graham H (1987) Ideas are in things: An application of the space syntax

method to discovering house genotypes. Environment and Planning B: Planning and Design 14(4):

363–385.
Hillier B, Penn A, Hanson J, et al. (1993) Natural movement: Configuration and attraction in urban

pedestrian movement. Environment and Planning B: Planning and Design 20(1): 29–66.

Jia et al. 19



Hu H, Geertman S and Hooimeijer P (2018) Market-conscious planning: A planning support meth-

odology for estimating the added value of sustainable development in fast urbanizing China.

Applied Spatial Analysis and Policy 11(2): 397–413.
Hunt JD and Abraham JE (2003) Design and application of the PECAS land use modeling system. In:

The 8th international conference on computers in urban planning and urban management, Sendai,

Japan.

Jacobs J (1961) The Death and Life of Great American Cities. New York: Random House.
Jiang B, Mak CNS, Zhong H, et al. (2018) From broken windows to perceived routine activities:

Examining impacts of environmental interventions on perceived safety of urban alleys. Frontiers in

Psychology 9: 1–16.
Jiang L, Masulloa M, Maffeia L, et al. (2018) How do shared-street design and traffic restriction

improve urban soundscape and human experience? An online survey with virtual reality. Building

and Environment 143: 318–328.
Jjumba A and Dragi�cevi�c S (2012) High resolution urban land-use change modeling: Agent iCity

approach. Applied Spatial Analysis and Policy 5(4): 291–315.
Jones P, Patterson J and Lannon S (2007) Modeling the built environment at an urban scale – Energy

and health impacts in relation to housing. Landscape and Urban Planning 83: 39–49.
Kim HK and Sohn DW (2002) An analysis of the relationship between land use density of office

buildings and urban street configuration: Case studies of two areas in Seoul by space syntax anal-

ysis. Cities 19(6): 409–418.
Kong LQ, Tian GJ, Ma BR, et al. (2017) Embedding ecological sensitivity analysis and new satellite

town construction in an agent-based model to simulate urban expansion in the Beijing metropolitan

region. Ecological Indicators 82: 233–249.
Koohsari MJ, Sugiyama T, Mavoa S, et al. (2016) Street network measures and adults’ walking for

transport: Application of space syntax. Health & Place 38: 89–95.
Landis DJ (1994) The California urban futures model: A new generation of metropolitan simulation

models. Environment and Planning B: Planning and Design 21(4): 399–420.
Landis J and Zhang M (1998) The second generation of the California urban futures model. Part 2:

Specification and calibration results of the land-use change submodel. Environment and Planning B:

Planning and Design 25(6): 795–824.
Lefebvre H (1962) Introduction to Modernity: Twelve Preludes, September 1959–May 1961. London

and New York: Verso.
Li X, Shi X, He JQ, et al. (2011) Coupling simulation and optimization to solve planning

problems in a fast-developing area. Annals of the Association of American Geographers 101(5):

1032–1048.
Li X and Yeh AG (2000) Modeling sustainable urban development by the integration of constrained

cellular automata and GIS. International Journal of Geographical Information Science 14(2):

131–152.
Liu XP, Liang X, Li X, et al. (2017) A future land use simulation model (FLUS) for simulating

multiple land use scenarios by coupling human and natural effects. Landscape and Urban

Planning 168: 94–116.

Long Y and Liu L (2017) How green are the streets? Analysis for central areas of Chinese cities using

Tencent street view. PLOS One 12(2): 1–18.
Long Y and Mao QZ (2009) Beijing urban development model: Urban growth analysis and simula-

tion. Tsinghua Science and Technology 14(6): 782–794.
Long Y and Wu K (2017) Simulating block-level urban expansion for national wide cities.

Sustainability 9(879): 1–19.
Lynch K (1984) Good City Form. Cambridge: MIT Press.
Martinez F (1996) MUSSA: Land use model for Santiago city. Transportation Research Record:

Journal of the Transportation Research Board 1552(1): 126–134.
Miller EJ and Salvini PA (2001) The integrated land use, transportation, environment (ILUTE)

microsimulation modeling system: Description and current status. In: The 9th international associ-

ation for travel behaviour research conference, Gold Coast, Queensland, Australia.

20 EPB: Urban Analytics and City Science 0(0)



Montgomery J (1998) Making a city: Urbanity, vitality and urban design. Journal of Urban Design

3(1): 93–116.
Olmedo MTC, Pontius RG, Paegelow M, et al. (2015) Comparison of simulation models in terms of

quantity and allocation of land change. Environmental Modelling & Software 69: 214–221.
Penn A, Hillier B, Banister D, et al. (1998) Configurational modeling of urban movement networks.

Environment and Planning B: Planning and Design 25(1): 59–84.
Pontius RG and Petrova SH (2010) Assessing a predictive model of land change using uncertain data.

Environmental Modelling & Software 25: 299–309.
Potdar K and Torrens PM (2019) Modelling spatio-temporal patterns in pedestrian behavior at the

edge with Jetson SOMs. In: NVIDIA GPU technology conference (GTC), Washington, DC, USA.
Prastacos P (1986) An integrated land-use-transportation model for the San Francisco region: 2.

Empirical estimation and results. Environment and Planning A: Economy and Space 18(4): 511–528.
Rinner C (2007) A geographic visualization approach to multi-criteria evaluation of urban quality of

life. International Journal of Geographical Information Science 21(8): 907–919.
Saelens BE, Sallis JF, Black JB, et al. (2003) Neighborhood-based differences in physical activity: An

environment scale evaluation. American Journal of Public Health 93(9): 1552–1558.
Sante I, Garcia AM, Miranda D, et al. (2010) Cellular automata models for the simulation of real-

world urban processes: A review and analysis. Landscape and Urban Planning 96(2): 108–122.
Shen ZJ, Kawakami M and Kawamura I (2009) Geosimulation model using geographic automata for

simulating land-use patterns in urban partitions. Environment and Planning B: Planning and Design

36(5): 802–823.
Simmonds CD (1999) The design of the delta land-use modeling package. Environment and Planning B:

Planning and Design 26(5): 665–684.
Simmonds D, Waddell P and Wegener M (2013) Equilibrium versus dynamics in urban modeling.

Environment and Planning B: Planning and Design 40(6): 1051–1070.
Stevens D and Dragi�cevi�c S (2007) A GIS-based irregular cellular automata model of land-use change.

Environment and Planning B: Planning and Design 34(4): 708–724.
Tang JX and Long Y (2019) Measuring visual quality of street space and its temporal variation:

Methodology and its application in the Hutong area in Beijing. Landscape and Urban Planning

191: 1–18.
Torrens PM (2014) High-fidelity behaviors for model people on model streetscapes. Annals of GIS

20(3): 139–157.
Vancheri A, Giordano P, Andrey D, et al. (2008) Urban growth processes joining cellular automata

and multiagent systems. Part 1: Theory and models. Environment and Planning B: Planning and

Design 35(4): 723–739.
Waddell P (2002) UrbanSim: Modeling urban development for land use, transportation, and environ-

mental planning. Journal of the American Planning Association 68(3): 297–314.
Wan L and Jin Y (2014) Review on applied urban modeling and new trends of urban spatial policy

models. Urban Planning Forum 1: 81–91.
Wegener M (1982) Modeling urban decline a multilevel economic-demographic model for the

Dortmund region. International Regional Science Review 7(2): 217–241.
Wegener M (2011) From macro to micro – How much micro is too much? Transport Reviews 31(2):

161–177.
Weidner T, Donnelly R, Freedman J, et al. (2007) A summary of the Oregon TLUMIP model micro-

simulation modules. In: Proceedings of 86th annual meeting of the transportation research board,

Washington, DC, USA.
Whyte WH (1980) The Social Life of Small Urban Spaces. Washington, DC: Conservation

Foundation.
Ye S, Pontius RG and Rakshit R (2018) A review of accuracy assessment for object-based image

analysis: From per-pixel to per-polygon approaches. ISPRS Journal of Photogrammetry and

Remote Sensing 141: 137–147.
Yin L (2017) Street level urban design qualities for walkability: Combining 2D and 3D GIS measures.

Computers, Environment and Urban Systems 64: 288–296.

Jia et al. 21



Zimu Jia: is now a Post-doc Research Associate in School of Architecture, Tsinghua
University, China. His research focuses on applied urban modeling based on urban big
data and deep learning. Before he joined Tsinghua University, he has been studied at
Beijing Normal University for 4 years and received his doctor’s degree with a major of
environmental planning and management. He received his master’s degree at the Chinese
University of Hong Kong and his bachelor’s degree at Beijing Normal University, Zhuhai.

Long Chen: is now a Post-doc Research Associate in School of Architecture, Tsinghua
University, China. His research interests include quantitative urban studies, sustainable
development and child-friendly city.

Jingjia Chen: is now a master student from Department of Urban Planning, School of
Architecture, Tsinghua University. Her research focuses on quantitative urban studies.

Guowei Lyu: is now a Lecturer of urban planning, a supervisor of master students at the
College of Land Science and Technology, China Agricultural University, China. His
research focuses on accessibility studies, rural studies, and eco-compensation studies.

Ding Zhou: is now a graduate student in Civil and Environment Engineering Department,
University of Michigan – Ann Arbor, the U.S. He is also pursuing a dual degree in Electrical
and Computer Engineering. His primary research interests include network modeling and
optimization, smart cities, and intelligent transportation systems. More information is avail-
able at https://dingzhouhub.github.io/.

Ying Long: is now an Associate Professor in School of Architecture, Tsinghua University,
China. His research focuses on urban planning, quantitative urban studies, and applied
urban modeling. Before he joined Tsinghua University, he has been worked for Beijing
Institute of City Planning as a senior planner for 11 years. Familiar with planning practices
in China and versed in the international literature, Dr. Long’s academic studies creatively
integrates international methods and experiences with local planning practices. Dr. Long is
also the founder of Beijing City Lab (BCL, www.beijingcitylab.org), an open research net-
work for quantitative urban studies. More information is available at http://www.beijingci-
tylab.com/longy.

22 EPB: Urban Analytics and City Science 0(0)


	table-fn1-2399808320942777
	table-fn2-2399808320942777
	table-fn3-2399808320942777
	table-fn4-2399808320942777
	table-fn5-2399808320942777
	table-fn6-2399808320942777

