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A B S T R A C T   

Urban greenery is closely related to people’s behaviour. With the advancement of science and technology in 
Artificial Intelligence, wearable sensors and cloud computing, the potential for studying the relationship between 
people and urban greenery through new data and technology is constantly being explored, such as assessing 
population exposure to urban greenery using multi-source big data. Taking one individual participant as a case 
study, this paper proposes and validates the effectiveness of using wearable camera (Narrative Clip 2) and 
machine learning (Applications Programming Interface of Microsoft Cognitive Service) to assess personal 
exposure to urban greenery. Microsoft API is used to identify urban greenery tags, including “flower”, “forest”, 
“garden”, “grass”, “green”, “plant”, “scene” and “tree”, in personal images taken by the wearable camera. Per
sonal exposure to urban greenery is assessed by calculating the frequency of the urban greenery tags in all the 
images taken. Furthermore, the overall evaluation and regularity of personal exposure to urban greenery 
(including “static exposure” and “dynamic exposure”) are explored to identify the characteristics of individual’s 
greenery lifelogging. This study makes a brave attempt that may contribute a new perspective in applying 
personal big data in studying individual behaviour.   

1. Introduction 

During the past few decades, urban greenery has been a keyword in 
city and landscape studies, with discussions emerging regarding how the 
natural environment influences human health and behaviour. Many 
theories, such as Stress Recovery Theory (Ulrich et al., 1991) and 
Attention Restoration Theory (Kaplan & Kaplan, 1989), have also pro
posed that intensive exposure to urban green space, such as woodlands, 
parks and gardens, has positive effects on humans’ physiological, 
cognitive and emotional conditions (Maas et al., 2006; Hansmann et al., 
2007; Gidlöf-Gunnarsson & Öhrström, 2007). However, while the 
complicated relationship between urban greenery and human wellbeing 
has long been discussed, how to track and measure personal exposure to 
urban greenery scientifically and efficiently is still a new question 
awaiting in-depth exploration. With the rapid development of technol
ogy, novel wearable devices and personal sensors have become ubiq
uitous in our daily life, and the huge potentials of these new technologies 
and tools can pave the way for more scientific and technological in
novations, which will bring new concepts and opportunities to rethink 
and verify previous methods and results. Exploring how to take 

advantage of various devices and methods to promote initial exploration 
is a common challenge in various fields. 

Researchers from the public health domain have called for more 
attention to the personal level and to monitoring people’s daily activities 
and exposure to greenery to explore more unknowns about human 
health(Bell et al., 2014), which is consistent with research in urban 
studies examining the influence of urban greenery on humans. In this 
paper, unlike empirical studies that employ large samples, we deter
mined to conduct a one-week personal experiment to test our proposed 
method, which is embracing new technology and a device to effectively 
measure and evaluate human-scale exposure to urban greenery in the 
micro-level environment. The results deliver important implications for 
more possibilities on how we could improve our methodology of 
assessing personal exposure to the surrounding environment. 

2. Related work in the literature 

2.1. Measuring exposure to urban greenery 

Evidence supporting a positive correlation between urban greenery 
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and people’s physical and mental health is accumulating. However, 
limited studies have explored how to quantify population exposure to 
urban greenery, especially on different spatio-temporal scales (Song 
et al., 2018). A traditional assessment of urban green environment 
quality is the green coverage rate (GCR) and greenspace area per capita 
(GAC), which are commonly calculated as total area of urban greenery 
divided by land or number of people (Fuller & Gaston, 2009; Yang et al., 
2014). Emerging satellite imagery technique and GIS tools have facili
tated the assessment of overall urban greenery as well as the distribution 
and accessibility of urban green space for a given place (Khalil, 2014). 
Wüstemann et al. (2017) used the urban green space derived from the 
European Urban Atlas to calculate residents’ access to green space 
within a 500 m radius of their home and found strong disparities in 
green space provision among German major cities. 

A commonly used indicator to describe land cover by vegetation is 
the Normalized Difference Vegetation Index (NVDI), which quantifies 
greenery through remote sensing measurements (Smith et al., 2017). de 
Keijzer et al. (2018) used the NDVI across buffers of 500 and 1000 m 
around residential addresses to represent older adults’ exposure to green 
space. However, studies have argued that both urban green environment 
assessment (GCR, GAC) and the NVDI measure urban greenery from an 
overhead view and thus may missing some eye-level greenery, such as 
lower bushes, green walls and trees under bridges (Gascon et al., 2016). 

Recently, the release of open big data by Internet companies has 
provided opportunities and a new lens to quantitatively measure the 
surroundings of urban residents. Google Street View (GSV) is a typical 
technology that enables researchers to measure street greenery at eye 
level. Y. Lu et al. (2018) used readily available GSV to develop methods 
and tools to assess the availability of eye-level street greenery, and the 
study asserts that GSV can accurately estimate residents’ daily exposure 
to street greenery (Y. Lu, 2019). 

Notably, with both the overhead-view urban greenery measured by 
remote sensing imagery and the eye-level street greenery quantified 
through GSV, a shared but implicit assumption is that the amount of 
urban greenery, either in total or on a per capita basis, represents the 
exposure of urban residents to urban greenspace. Such indicators pro
vide an overall assessment of the quality of a city’s green environment 
but have limited power to reveal people’s exposure to urban greenery. 

To overcome such limitations, studies have started to study the ef
fects of exposure to urban greenery at finer scales, such as Questionnaire 
surveys (Groenewegen et al., 2006) and geodemographic data (Barbosa 
et al., 2007) in the human scale. However, “people living in cities are 
constantly moving and rarely staying put in the same place all the time” 
(Song et al., 2018). Except known limitations of accuracy and sample 
sizes, traditional coarse measurements and statistics ignore the reality 
that people have their daily activity routines, which would not fully 
capture human mobility of exposure to the urban environment. 

With the advancements of technologies, Global Positioning Systems 
(GPS) and Location-Based Services (LBS) have provided researchers 
with precise objective tracks on people’s movement, which enables 
studies to combine measures of urban greenery with the dynamic ac
tivity spaces of people (Hirsch et al., 2016). Similar studies are emerging 
that explore the exposure to urban greenery using GPS-enabled smart
phone (Vich et al., 2019), and LBS data from smartphone Applications 
(Kondo et al., 2020; McEwan et al., 2020; Y. Song et al., 2020). Although 
the incorporation of such geographical data has improved the precise
ness and objectiveness in identifying people’s position in the sur
rounding environment, the quantification of “exposure” individually is 
still weak. 

2.2. Wearable camera as a new tool for collecting personal exposure data 

Since the 1980s, microelectronics technology has been developing 
rapidly. At present, many researchers suggest that, various kinds of 
commercial wearable devices become more available for the public and 
have huge potentials in tracking personal exposure and monitor 

personal health, such as fitness Trackers, smart wristbands and health 
monitors(Al Jassmi et al., 2019; Berenguer, 2015; Birenboim et al., 
2019). Among that, small and light wearable cameras, which can take 
photos periodically, passively and automatically, providing prominent 
functions of visual representation of personal behavioural data，since 
wearable camera can record the front view image directly reflecting 
what the wearer is exposing to in the surrounding environment. Also， 
researchers proved that image data obtained from wearable camera had 
been proved more likely to be true compared with original memory 
recall and location tracks (Kalnikaite et al., 2010).These recorded im
ages constitute a personal digital recording, with the same implication 
as “lifelogging” (Dodge & Kitchin, 2007), which means a digital record 
of personal experience. 

With the benefits of technology for image recognition and machine 
learning, the processing of massive image data has become feasible, 
effective and efficient, encouraging more attempts to apply the wearable 
cameras and lifelogging imagery in research of people’s daily activities 
(Duane et al., 2016; Wang & Smeaton, 2013). For example, wearable 
camera Microsoft SenseCam was applied to record the context of 
everyday life (Lindley et al., 2009) and travel behaviour (Kelly et al., 
2011). Zhou et al. (2019) invited 52 children to wear Narrative Clips to 
assess children’s dietary intake and behaviour.Meanwhile, some studies 
also adopted wearable cameras to measure personal exposure to the 
environment (Salmon et al., 2018), such as exposure to alcohol mar
keting in supermarkets (Chambers et al., 2017) and blue spaces (Pearson 
et al., 2017) are also being explored. Although wearable cameras have 
already been adopted in existing studies, most of them just used as an 
auxiliary tool to supplement the data, few studies regard imagery itself 
as a kind of data, and mainly focus on the potentials of picture data itself. 
Actually, each image is ä piece of datä containing rich contextual 
information. 

We realize that wearable cameras may offer great opportunities to 
quantify personal exposure to urban greenery, as they observe urban 
greenery from the perspective of the wearer by taking numerous photos, 
which can fill the gap in conventional way of measuring personal 
exposure to urban greenery in the existing literature. Taking advantage 
of the advancement of wearable camera and machine learning tech
nology, this paper mainly centres on the research question of how to 
apply wearable cameras and machine learning to measure personal 
exposure to urban greenery automatically and effectively, to propose an 
innovative method to quantify personal exposure to urban greenery 
rather than general empirical evidence. Using Microsoft API to detect 
urban greenery from 19,544 images collected from Narrative Clip 2 in 
one person’s daily life, the replicability and universality of our proposed 
method can be demonstrated from another four participants of different 
genders, ages, educational backgrounds and occupations. Based on our 
concept of personal greenery lifelogging, the limitations and merits of 
the measurement were also discussed at the end. 

3. Methodology 

Taking advantage of advances in devices and technology, this paper 
proposes a new methodology to simplify the process of tracking personal 
greenery exposure and improve the accuracy and effectiveness of the 
analysis (Fig. 1). The methodology consists of the following four major 
steps: 1) Carrying out a one-week participant trial by outfitting partic
ipants with a wearable camera three times in consecutive months, 
through A total of 19,544 personal exposure images were collected in 
total. 2) After image cleaning, detecting elements in the images that 
represented urban greenery, such as tree, brush and flower, through 
Microsoft API. 3) Analysing and visualizing the result to identify the 
regularity of one-week exposure and analyse the characteristics of how it 
occurs (either ‘static exposure’ or ‘dynamic exposure’), then comparing 
the differences in urban greenery exposure under various weather 
conditions. 4) Validating the accuracy and feasibility of the proposed 
method by comparing the results with memory recall and manual audit. 
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4. Data collection, processing and analysis 

4.1. Introducing the wearable camera: Narrative Clip 2 

As a type of human sensor, a wearable camera incorporates cutting- 
edge technologies to self-review daily life visually with user-friendly 
operation. The commonly seen commercial wearable cameras on the 
market include SenseCam1 and Gopro,2 which are used extensively in 
current personal health care research. In this study, a wearable camera 
named the Narrative Clip 2 was adopted to collect personal exposure 
images. Compared with SenseCam and Gopro, the Narrative Clip 2 is 
superior in its tiny size and lighter weight. Additionally, since the 
Narrative Clip 2 can be clipped onto clothing, it is more stable and less 
noticeable than SenseCam. The Narrative Clip 2 is also more cost- 
effective than Gopro. 

The Narrative Clip 2 was first produced in 2012 and is currently in 

short stock around the world, but some newly commercial wearable 
cameras are available on the market now, such as iON SnapCam3and 
SereneLife4, which have similar size and appearance to Narrative Clip 2, 
also support high-quality images for lifelogging recording. The original 
concept of the Narrative Clip 2 is a lifelogging camera that can auto
matically capture video and images of the wearer’s daily life, so 
everyone can tell their own story through their lifelog. However, limited 
by the cost and short stock, we could only obtain one device at this stage 
and therefore could only record one participant’s consecutive personal 
exposure images for this pilot study. The specifications of the camera are 
listed in Table 1 below. During the study, the participant was required to 
wear the camera on the collar in a fixed and stable position to capture 
the front view. To guarantee the readability of the images, the partici
pant had to ensure that the lens of the camera was not blocked by other 
objects, such as a jacket or hair. The design and operation of the camera 
is simple and user-friendly; there is no button beyond the power switch, 

Fig. 1. Methodology of this study.  

1 Sensecam is a wearable camera developed by Microsoft in 2004, which 
contains a number of different electronic sensors and can take images auto
matically. Information is available on the website: https://www.microsoft. 
com/en-us/research/project/sensecam.  

2 Gopro is a versatile camera with a small size; it captures moments in various 
situations and supports 1080p in images and videos. Information is available on 
the website: https://gopro.com/en/us/shop/cameras. 

3 SnapCam allow people capture all of life’s moments, support a high- 
resolution (8 megapixel) image and video model, and 10s/30s/1 min time- 
lapse shooting. More information: https://uk.ioncamera.com/snapcam-retailer 
s/.  

4 SereneLife support 1080p Full HD with Built-in Wi-Fi, Ideal for Classroom 
to Record the Lecture, Sports, Jogging, Cycling, Hiking, Fishing, and Camping. 
More information: https://serenelifehome.com/. 
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and it automatically starts shooting images when the power is on, so the 
participant only needed to clip it to the right place. Meanwhile, there is a 
built-in light-sensor, which enables the camera to stop shooting in a dark 
environment as there is no flashlight. Each day before wearing the 
camera, the participant had to make sure it was fully charged to enable 
consecutive shooting for as long as 12 to 15 h. Likewise, after wearing 
the camera, the images had to be exported in time to leave sufficient 
space on the memory card for the next day’s recording. When the power 
is on, the Narrative Clip 2 takes a picture every 30 s to record the front 
view of the wearer, resulting in an average of 1000 photos each day 
assuming 9–10 h of wear time. 

4.2. Participant’s information and data collection 

The participant was recruited in August 2018 and was asked to wear 
the camera for one week each in August, September and October. Before 
the participant began wearing the camera, we conducted a short inter
view with the participant to acquire some basic background information 
and provided guidance on using the Narrative Clip 2 for data collection. 
The participant was a 27-year-old female who worked at a university 

and lived close to the campus. The individual usually walked or cycled to 
work and spent the entire day on campus during workdays and had 
lunch and dinner at the canteen on campus as well. She noted that her 
daily activities were within a 2000-m life circle around her home. 

Because the purpose of wearing the camera was to record the par
ticipant’s exposure to the environment, especially urban greenery, the 
participant usually began wearing the camera at 8:00 each day when she 
left for work and did so until arriving home in the evening, which was 
between 19:00 and 23:00. During the wearing time, the participant had 
to clip the camera onto her collar and ensure it faced the same direction 
when she moved. The participant could decide when and where to wear 
the camera; she could remove it if she felt uncomfortable or that it was 
inappropriate to wear on some occasion. Additionally, for privacy rea
sons, the participant could decide which images would be deleted before 
submitting them. The camera-wearing experiment protocol and images 
collected by the camera each day during the experiment are described in 
Fig. 2, this paper takes data from August to October to evaluate the 
overall level of urban greenery exposure, and one week data in October 
to describe the characteristics of the greenery exposure more 
specifically. 

4.3. Image detection using Microsoft Cognitive Service API 

Applications Programming Interface (API) is a computing interface 
that allows third parties to use the functionality of certain software 
applications. In this paper, we take advantage of Microsoft Cognitive 
Services to apply the computer vision technology (https://azure.micros 
oft.com/en-us/services/cognitive-services/). Microsoft Cognitive Ser
vice (MCS) based on cloud computing, brings artificial intelligence 
technology and machine learning to every developer without profes
sional backgrounds by calling an API, which is less expensive and more 
secure and reliable than a personal hard drive. Microsoft API provides 
access to advanced machine learning algorithms that process pictures 
and videos at high speed, then extract and return rich information to 
users, including tagging visual features, detecting objects and describing 
images. Users can connect to the embedded AI function by calling API, 

Table 1 
Technical specifications of the camera.  

Image Specification 

Weight 19 g 
Price $199 
Period sold 2014–2019 
Original name Memoto 
Camera Sensor 8MP/1080p Video 
Camera Aperture f/2.2 
Lens Diagonal 
FoV 

86◦

Resolution 3264 × 2448 (4:3) 
Storage Stores up to 4000 photos or 80 min of 

video 
GPS Built-in 

(Source: http://getnarrative.com/) 

Fig. 2. Camera-wearing protocol and personal information. 
Notes: Fig. 2-a) shows how the participant wore the Narrative Clip 2 and presents a sample image taken; Fig. 2-b) presents the records of data collection during 
wearing. During the data collection, since the camera wearing was not intended to increase the participant’s burden, on some days, she could decide not to wear it or 
take it off if she felt wearing it was stressful or inappropriate for her work. 
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even researchers without machine learning expertise, in a simplified 
method to realize automatic image detection using machine learning. 

As shown in Fig. 3, this process aims to identify and tag visual fea
tures in the images, which are further used to measure the exposure to 

urban greenery. Before calling the API service, users must register on the 
website of Azure for all services. Each new customer receives a free 
account to call for the API service within one month; after that, the price 
for 1 M transaction is approximately 1 U.S. dollar. After entering the 

Fig. 3. Process of Microsoft API image detection.  
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dashboard, users can build a new task and choose the desired service, 
and then they will obtain access to the request key number, which is 
provided after calling. Then, users choose the programming language (e. 
g., Java, C++, Python) and API console, making sure to select the cor
rect location for this resource (e.g., Australia East, Central Unite State, 
West Europe). After this preparation, users can upload an image 
resource or link to the local image folder and wait for the result, usually 
including the image name, identification of all “tags”, and simple de
scriptions. This paper used Python to process the images, and it usually 
took 10 s for each image to be processed. In total, forty hours total were 
spent for all the images. 

4.4. Data analysis 

According to the results of MCS API identification, we achieved more 
than 200 types of tags in these images. The tags are further classified into 
indoor or outdoor environment, with outdoor tags including trees, cars, 
water, pavement, and building and indoor tags including lamp, table, 
window, and wall. As shown in Fig. 4-a), the tags are connected with 
other information from each image, such as location, time and event, to 
determine the motion and current circumstances of the participant. In 
addition, 8 types of outdoor tags are selected to represent urban 
greenery, including “flower”, “forest”, “garden”, “grass”, “green”, 
“plant”, “scene” and “tree”, as shown in Fig. 4-b). 

If one or more urban greenery tags are identified in an image, the 
urban greenery index for the image is defined as 1; otherwise, it is 0. 

That is, the result of the tag analysis is always binary, either 1 or 0 for 
each image. Finally, the result of the tag analysis is visualized to reflect 
the characteristics and potential regularity of the participant’s exposure 
to urban greenery. As shown in Fig. 4-c), the images with urban greenery 
as 1 are coloured green, and a slide bar is created to visualize the time 
and period that the participant is exposed to urban greenery. Checking 
the results of the visualizing slides with the original image database, we 
find four periods of urban greenery exposure: the morning and late af
ternoon commute between home and work and the round trip to lunch. 
Following this approach, this paper explores the fundamental rules or 
regularities of personal exposure to urban greenery based on the weekly 
dataset. 

5. Results 

5.1. Overall evaluation of personal exposure to urban greenery 

Based on the results of detection and aggregations of total occur
rences of greenery-related tags, this paper evaluates the degree of daily 
exposure to urban greenery by counting the number of images with 
greenery identified. This paper evaluates the overall level of urban 
greenery exposure from August to October by comparing the frequency 
of “Greenery” (the proportion of images with greenery), also taking the 
frequency of “Outdoor” as a reference, and calculates the ratio of 
“greenery” to “outdoor” as well describing the degree of personal 
exposure to greenery when remaining outdoors. The results show that 

Fig. 4. Greenery detection and data analysis. 
Notes: Fig. 4-a) on the upper left provides two sample images with and without urban greenery; 4-b) on the upper right presents sample images of the types of urban 
greenery tags that appeared; 4-c) on the bottom is the generation of the description of greenery exposure. 
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the wearer went outdoors more frequently and had higher average 
exposure to urban greenery in August, and then the rate decreased in 
October. However, the rate of greenery exposure and ratio of “greenery” 
to “outdoor” increased, which implies that the wearer sought more 
closeness to greenery when she went outdoors in October. The purpose 
of staying outdoors for more exposure to greenery may become a driving 
force during autumn. Fig. 5 shows that the average exposure time to 
greenery accounted for 15% of the participant’s entire daily routine but 
accounted for a large percentage (60%) of outdoor time, which suggests 
personal exposure to greenery is higher. 

5.2. Greenery lifelogging: ‘static exposure’ and ‘dynamic exposure’ to 
urban greenery 

This paper focuses on exposure to urban greenery during a week in 
October, with the green sections also indicating the images identified as 
greenery. During weekdays, high greenery exposure usually appears in 
commuting, eating out, going out and leisure time. The results show that 
the average proportion of greenery exposure was approximately 10% of 
the wearer’s active time, while this ratio increased to 11.6% on Sunday. 
Additionally, we find that some places or routes appear in the images 
repeatedly and continually, which indicates that some fixed places and 
routes with corresponding exposure often occur simultaneously and 
regularly; as a result, this paper separates the exposure into “Static 
exposure” (Green Place) and “Dynamic exposure” (Greenery Path). As 
Fig. 6-a) and 6-b) show, “Static exposure” means remaining in a place 
surrounded by or adjacent to brush and trees more frequently since some 
leisure places, such as lotus ponds and grassy areas, are found in the 
image data, which indicate the individual liked to stay there for longer 
time. “Dynamic exposure” means exposure to greenery during move
ment. It is clear that the contents in the continuous image sequence also 
occur consistently, meaning that exposure to greenery was consistent 
and kinematic. 

According to the results of API calculation and manual inspection, it 
is possible to identify how the two types of exposure alternate and the 
characteristics of personal exposure. In Fig. 6-c), the slides of “Static 
exposure” and “Dynamic exposure” are labelled in the one-week 
greenery exposure. It is shown that dynamic greenery exposure usu
ally occurred regularly on weekday mornings, while static greenery 
exposure usually occurred during weekends, and the duration was al
ways longer than on weekdays. As the participant recalled, she usually 

cycles or walks along urban roads with trees and enters the campus 
through the east gate of the university, and the greenery level on campus 
is obviously higher than outside it, which increases her exposure to 
greenery. The results show that dynamic exposure made up a large 
percentage of her daily exposure to greenery, which can be interpreted 
to suggest that the individual did not have sufficient opportunity to 
remain for long times in a green environment. However, the manual 
inspection reveals some inconsistencies (grey-coloured slides) with the 
API calculation. These occur because API can mistakenly identify objects 
and categorize indoor plants or greenery outside windows as outdoor 
greenery. Finally, each tiny part of the participant’s daily exposures 
forms a digital recording of her lifelogging of ‘Greenery’, including every 
fragmented information such as time, duration and condition of the 
exposure, describing and representing the personal exposure systemat
ically and completely. 

6. Validation 

6.1. Validating effectiveness: comparison with memory recall 

The results allow easy identification of the regularity of personal 
exposure to urban greenery. In the interview, the participant said that 
she could only remember some green spaces in which she usually stayed 
but had a blurry memory regarding her degree and frequency of expo
sure to urban greenery. 

Compared with the participant’s personal memory recall of her 
exposure (Fig. 7), the wearable camera used in this study provides a 
more detailed description of her exposure and reduces the effort 
required in data collection since a wearable camera is conducive to self- 
tracking over a long time period with more detail and machine learning 
enables effective detection and analysis of these images. More impor
tant, although the participant could recall some locations with impres
sive urban greenery, she had difficulty remembering the specific time 
and duration of the exposure, especially for some fragmented times 
during daily activities, such as commuting. There is potential for some 
degree of underestimation or overestimation of personal exposure, 
suggesting that the participant lacked the ability to recall much of her 
own exposure to urban greenery. The results of the wearable camera and 
machine learning provide an means of effectively evaluating the degree 
and reflecting the characteristics of personal exposure to greenery. 

Fig. 5. Greenery detection and data analysis. 
Notes: a) “Outdoor” means the proportion of staying outdoors through reading the contents of images, the proportion of outdoor = images taken outdoors/ total 
image number. b) “Greenery” means the proportion of images with greenery through API detection, the proportion of greenery = images with greenery/total image 
number. c) The ratio of “greenery” to “outdoor” = images with greenery/ images taken outdoors, implying the degree of exposure to greenery while outdoors. 
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Fig. 6. Static and Dynamic exposure to greenery.  
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6.2. Validating accuracy: comparison with manual audit 

This paper employed a wearable camera and Microsoft API to obtain 
and detect the images automatically, and for validation purposes, we 
conduct a 10% sample test. From each day’s images, we randomly select 
one from every ten to build a test group, examining the image by manual 
audit and comparing it with the previous machine learning result. 
Browsing the results, because we find that errors occurring during both 
taking photos with the wearable camera and API detection influence the 
accuracy, the validation is focused on image quality and the detection of 
API. Image quality is evaluated by the proportion of low-quality images, 
including blurred images caused by fast movement and weak light 
during the night, and incomplete images caused by objects blocking the 
view, such as hair, a scarf or a collar, and items in hands. In Fig. 8, the 
results show that the main problem affecting the quality of images in the 
study is the view blocked by other objects, while blurred images account 
for only a small percentage of the total. That is, a wearable camera is a 
reliable and effective way to capture images, and the key is to wear it 
correctly and keep the lens free of blocking objects. Second, the detec
tion of API is evaluated by the proportion of errors from “fail to detect 
the greenery that actually exist in the images” and “regard other green- 
coloured objects as greenery mistakenly”. The results show that the total 
error rate is approximately 8%–10%, and the difference between the two 
types of errors is not obvious, which means the chances of both types of 
errors are similar due to the shortcomings of the API system. We also 
find that the camera angle and perspective may influence the results. 
Even if some blockage exists, as long as the images are readable and the 
crucial elements are still visible, the API can still work, but the 
perspective of images will influence their content, which reduces the 
accuracy. 

6.3. Validation of the universality and feasibility of the method 

To counteract the potential bias from the participant in terms of age, 
gender, education, occupation, etc. and to validate the universality and 
feasibility of the proposed method in this paper, 4 more participants 
with different socio-demographic backgrounds (Fig. 9) were recruited to 

wear the Narrative Clip 2 for one week. In addition, one more student 
auditor without a programming background was recruited to perform 
the API detection for the first time. More experience from this extension 
of the application shows that whether for a courier who travels around a 
city and spends most of the daytime outdoors or a SOHO white-collar 
worker or college student who leads a moderate lifestyle and stays in
doors more, a wearable camera works well in various situations. Addi
tionally, images from retired older adults illustrate that wearable 
cameras are also user-friendly and easily operated by seniors. It is clear 
that the wearable camera can be applied in various situations by 
different people to explore the regularity and characteristics of personal 
exposure. Furthermore, with Microsoft API, the process of extracting 
information from images can be simple and fast, making it possible to 
handle larger numbers of images in group studies, even for novices 
without professional knowledge. However, in addition to the automatic 
detection of tags in images, the accuracy of API detection must be 
improved in the future by the inclusion of self-training tags. Therefore, 
use of wearable cameras and API helps conserve effort in collecting and 
analysing personal tracking data and satisfy the purpose of measuring 
and evaluating personal exposure to urban greenery. 

7. Discussion 

7.1. Academic contributions 

Overcoming the limitations of the traditional measurement of 
exposure to urban greenery, this paper focuses on the human scale and 
micro-environment, provides a fresh angle to observe and track personal 
exposure to urban greenery by collecting high-resolution picture data. 
This is our first attempt to adopt wearable camera into personal expo
sure analysis, thus the purpose of this study focused on the improve
ments and explorations of the methodology part. Focus on the value of 
image itself, this paper tests a new method to extract and analyse rich 
contextual information from continuous time-lapse personal imagery 
effectively, and applies them to objectively evaluate personal exposure 
to urban greenery. At the individual level, the results also reflect the 
regularity of personal exposure to urban greenery and present the 

Fig. 7. Comparison between recall and wearable camera.  
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characteristics of personal greenery lifelogging in daily life, although the 
limited sample size may weaken our findings. 

The highlights of this paper are still worthy to be mentioned:  

• To our knowledge, this is the first attempt to adopt a wearable 
camera, the Narrative Clip 2, to track personal greenery exposure by 
analysing continuous imagery in urban setting.  

• Taking advantage of Microsoft Cognitive Services to simplify the 
application of machine learning in detecting ̈greenerÿ in numerous 

images, which significantly reduces the technical barriers for people 
without relevant skills. 

• Applying the concept of measuring and evaluating ‘Greenery life
logging’ to represent the regularity and characteristics of personal 
greenery exposure, which can potentially be applied in other prac
tical areas as well. 

Last but not least, the effectiveness of our methodology has been 
validated in this study, while evidences with more participants are 

Fig. 8. Manual audit for validating the detection accuracy. 
Notes: a-1) The quality of the wearable camera images is validated through evaluating the rate of two low-quality images: blurred images and incomplete images 
caused by blocking objects. 2) Calculation of the rate of low-quality images: Rate of incomplete images = number of images with blockages/ total number of sample; 
Rate of blurred images = number of blurred images/ total number of sample. 
b-1) API is validated by evaluating the rate of errors during the detection: failure to detect greenery that actually exists in the images and mistaken detection of other 
green-coloured objects as greenery. 2) Calculation of the rate of API error: Rate of failure to detect = number of images with greenery but without greenery tags/ total 
number of sample; Rate of mistaken detection = number of images without greenery but with greenery tags/ total number of sample. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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expected in the future. We hope further studies of measuring exposure to 
urban greenery from micro and humanistic perspectives can provide a 
deeper interpretation of individual exposure to greenery, especially for 
interdisciplinary research. 

7.2. Limitations 

Despite merits above, there are still limitations of this study. Due to 
the high price and limited stock of the Narrative Clip 2, it was not 
possible to recruit a large number of participants to join this study 
during our experiment, this pilot study takes one participant’s data as an 
example to illustrate the method proposed, which is the main limitation 
of this paper. Although this paper conducted a long-term tracking of the 
same participant in August, September and October to guarantee that a 
sufficient number of images were collected and tested the possibility of 
long-time usage of the device in daily life the possibilities of larger scale 
recruitment need to be tested. 

Another limitation was certain effects of the wearable camera and 
calling API. Some problems with image quality occurred as a result of 
the following limitations of the Narrative Clip 2:  

• Poor light sensor of the lens delivers low-quality images in dark 
situations;  

• Lack of anti-shaking function, as a result of which clear images 
cannot be captured during intense movement;  

• The limited battery life makes it difficult to support long periods of 
shooting, and there is no warning tone of low battery; as a result, 
sometimes the camera may be already dead with no notification;  

• The angle of the camera is difficult to control to always face the front; 
sometimes the camera may face the ground or sky during movement 
and fail to capture the surrounding greenery;  

• Hair and scarves or other accessories will block the lens, which 
lowers the quality of images;  

• There is a single function without more sensors to record locations, 
time-stamp images, and monitor other environmental details, such as 
temperature and humidity. 

The study has proved that images quality is the key factor in greenery 
analysis, which will influence the result of API detection. Regarding 
calling API to process images, the limitations mainly stem from two 
aspects of the API system: sometimes it fails to detect greenery that 
actually exists in images, and sometimes it mistakenly regards other 
green-coloured objects as greenery. The limitations of API detection can 
be overcome by optimizing the API function and creating new tags 
suitable to individual projects. 

7.3. Next steps for improvement 

Considering the limitations of this paper, it is necessary to improve 
the method before carrying out more studies. First, since the added value 
of our paper is to test the effectiveness of using wearable camera and 
continuous imagery recoding rather than only Narrative Clip 2 product. 
More available portable image and video recording devices can be 
considered as the replacement of the Narrative Clip 2, and possible 
options as following:  

• Test other available commercial cameras such as SenseCam, iON 
SnapCam and SereneLife mentioned above. Since iON SnapCam and 
SereneLifea are more affordable than Narrative Clips, it is possible to 
employ large samples and acquire more empirical evidence.  

• Cameras with video recording function such as Gopro, can be 
installed on vehicles, motorbikes and bicycles to study the personal 
exposure of greenery under different models of movement. 

Secondly, multiple types of personal sensors can be combined with a 
wearable camera, such as GPS, accelerators, eye trackers and personal 
health monitor sensors, to measure more dimensions of personal expo
sure to greenery. 

7.4. Potential applications 

The concept of personal exposure to urban greenery can also be 
applied in other aspects of personal environmental exposure and in
crease people’s knowledge of their surroundings and themselves. To 
simplify the procedure and process of calculation, our research team 
developed a project named “Life Log Calculator” to calculate the mul
tiple exposure rate to the environment (as shown in Figure Appendix 
Fig. 1), which provides six types of pre-set classifications: ‘city’, ‘traffic’, 
‘outdoor’, ‘screen’, ‘green’ and ‘food’. After the results of API analysis 
were uploaded, the program calculated the exposure degree, and an 
answer window popped up containing the results. 

However, potential applications of interdisciplinary operations 
require more attention in urban environmental studies. As wearable 
cameras not only contribute to deep knowledge of individual exposure 
but also provide perspective on lifestyle and habits, this cutting-edge 
method enables us to know more about the real spatial-temporal rela
tionship between individuals and cities. For example, the paper men
tions static and dynamic greenery exposure; if larger numbers of cases 
show similarities in choices and habits in exposure of greenery, it will be 
possible to rethink the distribution of greenery in cities and attempt to 
increase exposure by changing the organization of green space. There
fore, this new device and technology can provide technical support for 
site study, such as urban spatial evaluation and route selection of pe
destrians. We expect that more research will take advantage of wearable 

Fig. 9. Comparison among other 4 participants’ one-day exposure.  
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cameras and new technology to study personal exposure and environ
ments in urban space. 

8. Conclusions 

This research proposes an easy method to measure personal exposure 
to urban greenery by means of wearable cameras and calling Microsoft 
API machine learning. The method proved that a wearable camera can 
record abundant imagery of an individual’s exposure to greenery auto
matically and passively, along with the technology of image detection, 
which help understand the role of greenery during individual life
logging. The results evaluate the overall level of greenery exposure and 
show the regularity and characteristics of different types (Static expo
sure and Dynamic exposure) in daily life and tendencies in various 
seasons, also representing the variety among different people. This 
paper is beneficial in capturing and evaluating the level of greenery 
exposure from a personal and microenvironment perspective, which will 
lead to more exploration in interdisciplinary fields involving the urban 
environment and personal exposure. 
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Appendix A

Appendix Fig. 1. “Life Log Calculator”.  

To simplify the procedure and calculation process, a project named “Life Log Calculator” was developed by our research team; it is a PC program 
that can calculate the rate of exposure to the environment based on JAVA language. In this program, we provide six types of pre-set classifications as 
the buttons show, the program calculates the exposure degree, and then a results window provides an answer. As the example shows, the urban 
exposure of this individual has reached 69.61%. At the same time, the calculator also supports user-defined search. In the keyword interaction window 
of the software interface, users can customize search labels, such as more specific foods (banana, apple, etc.), and type these words in the interaction 
window connected by “&”. The calculator will search all the provided keywords and produce a result. The calculator is designed for wearers or other 
experts, helping users know themselves or their research groups more effectively and accurately. 

References 

Al Jassmi, H., Ahmed, S., Philip, B., Al Mughairbi, F., & Al Ahmad, M. (2019). E- 
happiness physiological indicators of construction workers’ productivity: A machine 
learning approach. Journal of Asian Architecture and Building Engineering, 18(6), 
517–526. https://doi.org/10.1080/13467581.2019.1687090. 

Barbosa, O., Tratalos, J. A., Armsworth, P. R., Davies, R. G., Fuller, R. A., Johnson, P., & 
Gaston, K. J. (2007). Who benefits from access to green space? A case study from 
Sheffield, UK. Landscape and Urban Planning, 83(2–3), 187–195. https://doi.org/ 
10.1016/j.landurbplan.2007.04.004. 

Bell, S. L., Phoenix, C., Lovell, R., & Wheeler, B. W. (2014). Green space, health and 
wellbeing: Making space for individual agency. Health and Place, 30, 287–292. 
https://doi.org/10.1016/j.healthplace.2014.10.005. 

Berenguer, A. G. (2015). I feel you-monitoring environmental variables related to asthma 
in an integrated real-time frame. BMC Research Notes, 8(1), 15–18. https://doi.org/ 
10.1186/s13104-015-1421-4. 

Birenboim, A., Dijst, M., Scheepers, F. E., Poelman, M. P., & Helbich, M. (2019). 
Wearables and location tracking technologies for mental-state sensing in outdoor 

environments. The Professional Geographer, 71(3), 449–461. https://doi.org/ 
10.1080/00330124.2018.1547978. 

Chambers, T., Pearson, A. L., Kawachi, I., Rzotkiewicz, Z., Stanley, J., Smith, M., barr, M., 
Ni Mhurchu, C., & Signal, L. (2017). Kids in space: Measuring children’s residential 
neighborhoods and other destinations using activity space GPS and wearable camera 
data. Social Science and Medicine, 193, 41–50. doi:https://doi.org/10.1016/j.so 
cscimed.2017.09.046. 

Dodge, M., & Kitchin, R. (2007). “Outlines of a world coming into existence”: Pervasive 
computing and the ethics of forgetting. Environment and Planning B: Planning and 
Design, 34(3), 431–445. https://doi.org/10.1068/b32041t. 

Duane, A., Gupta, R., Zhou, L., & Gurrin, C. (2016). Visual Insights from Personal Lifelogs 
Insight at the NTCIR-12 Lifelog LIT Task. 386–389. 

Fuller, R. A., & Gaston, K. J. (2009). The scaling of green space coverage in European 
cities. Biology Letters, 5(3), 352–355. https://doi.org/10.1098/rsbl.2009.0010. 

Gascon, M., Cirach, M., Martínez, D., Dadvand, P., Valentín, A., Plasència, A., & 
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J. M., Nieuwenhuijsen, M. J., Sunyer, J., & Dadvand, P. (2018). OP VIII – 2 Green 
space exposure is associated with slower cognitive decline in older adults: a 10-year 
follow-up of the whitehall ii cohort. Occupational and Environmental Medicine, 75 
(Suppl 1), A15 LP-A16. doi:10.1136/oemed-2018-ISEEabstracts.37. 

Kaplan, R., & Kaplan, S. (1989). The experience of nature: A psychological perspective. CUP 
Archive. 

Kelly, P., Doherty, A., Berry, E., Hodges, S., Batterham, A. M., & Foster, C. (2011). Can we 
use digital life-log images to investigate active and sedentary travel behaviour? 
Results from a pilot study. International Journal of Behavioral Nutrition and Physical 
Activity, 8(1), 44. https://doi.org/10.1186/1479-5868-8-44. 

Khalil, R. (2014). Quantitative evaluation of distribution and accessibility of urban green 
spaces (case study: City of Jeddah). International Journal of Geomatics and 
Geosciences, 4(3), 526–535. https://www.researchgate.net/publication/ 
264037052%0Ahttp://ipublishing.co.in/jggsarticles/volfour/EIJGGS4046.pdf. 

Kondo, M. C., Triguero-Mas, M., Donaire-Gonzalez, D., Seto, E., Valentín, A., Hurst, G., 
… Nieuwenhuijsen, M. J. (2020). Momentary mood response to natural outdoor 
environments in four European cities. Environment International.. https://doi.org/ 
10.1016/j.envint.2019.105237. 

Lindley, S. E., Randall, D., Sharrock, W., Glancy, M., Smyth, N., & Harper, R. (2009). 
Narrative, memory and practice: Tensions and choices in the use of a digital artefact. 
People and Computers XXIII Celebrating People and Technology - Proceedings of HCI 
2009, 1–9. Doi:10.14236/ewic/hci2009.1. 

Lu, Y. (2019). Using Google street view to investigate the association between street 
greenery and physical activity. Landscape and Urban Planning.. https://doi.org/ 
10.1016/j.landurbplan.2018.08.029. 

Lu, Y., Sarkar, C., & Xiao, Y. (2018). The effect of street-level greenery on walking 
behavior: Evidence from Hong Kong. Social Science and Medicine, 208(December 
2017), 41–49. https://doi.org/10.1016/j.socscimed.2018.05.022. 

Maas, J., Verheij, R. A., Groenewegen, P. P., De Vries, S., & Spreeuwenberg, P. (2006). 
Green space, urbanity, and health: how strong is the relation? Journal of Epidemiology 
& Community Health, 60(7), 587–592. 

McEwan, K., Ferguson, F. J., Richardson, M., & Cameron, R. (2020). The good things in 
urban nature: A thematic framework for optimising urban planning for nature 
connectedness. Landscape and Urban Planning, 194(March 2019), 103687. https:// 
doi.org/10.1016/j.landurbplan.2019.103687. 

Pearson, A. L., Bottomley, R., Chambers, T., Thornton, L., Stanley, J., Smith, M., … 
Signal, L. (2017). Measuring blue space visibility and “blue recreation” in the 
everyday lives of children in a capital city. International Journal of Environmental 
Research and Public Health, 14(6). https://doi.org/10.3390/ijerph14060563. 
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