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H I G H L I G H T S  

• Accuracy of the proposed framework is over 90 percent of professional auditors. 
• Efficiency of the automatic framework is 15 times higher than the manual method. 
• City stratification greatly improves robustness of large-scale identification. 
• Urban vacant land identification results in 36 major Chinese cities are obtained.  
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A B S T R A C T   

Urban vacant land is a growing issue worldwide. However, most of the existing research on urban vacant land 
has focused on small-scale city areas, while few studies have focused on large-scale national areas. Large-scale 
identification of urban vacant land is hindered by the disadvantage of high cost and high variability when 
using the conventional manual identification method. Criteria inconsistency in cross-domain identification is also 
a major challenge. To address these problems, we propose a large-scale automatic identification framework of 
urban vacant land based on semantic segmentation of high-resolution remote sensing images and select 36 major 
cities in China as study areas. The framework utilizes deep learning techniques to realize automatic identification 
and introduces the city stratification method to address the challenge of identification criteria inconsistency. The 
results of the case study on 36 major Chinese cities indicate two major conclusions. First, the proposed frame-
work of vacant land identification can achieve over 90 percent accuracy of the level of professional auditors with 
much higher result stability and approximately 15 times higher efficiency compared to the manual identification 
method. Second, the framework has strong robustness and can maintain high performance in various cities. With 
the above advantages, the proposed framework provides a practical approach to large-scale vacant land iden-
tification in various countries and regions worldwide, which is of great significance for the academic develop-
ment of urban vacant land and future urban development.   

1. Introduction 

Urban vacant land (UVL) is a growing issue worldwide (Gobster, 
Hadavi, Rigolon, & Stewart, 2020; Li, Zhou, Bai, Pickett, & Han, 2018; 
Martinez-Fernandez, Audirac, Fol, & Cunningham-Sabot, 2012; New-
man, Bowman, Jung Lee, & Kim, 2016). Both disordered urban 

expansion and urban shrinkage have led to the emergence of UVL 
(Bowman, 2004; Haase, Haase, Kabisch, Kabisch, & Rink, 2012; Kel-
leher, Golden, Burkholder, & Shuster, 2020). UVL is a waste of land 
resources, but it is a potential opportunity for urban development, as it is 
of great significance for improving the urban spatial structure and 
formulating urban development strategies (Branas et al., 2018; Heckert, 
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2015; Németh & Langhorst, 2014; Song et al., 2020). 
Conventional methods to obtain UVL data include two types. The 

first approach is to send a questionnaire survey to the city planning 
department (Bowman & Pagano, 2000; Newman et al., 2016). Through 
this method, one can acquire authoritative statistical UVL data at the 
city scale. To investigate finer-scale spatial and temporal properties of 
UVL, many studies have adopted the second method, i.e., manual UVL 
identification based on visual interpretation of high-resolution remote 
sensing (HRRS) images. Li et al. (2018) manually delineated vacant land 
in 0.3 m resolution aerial photos of Shanghai city in 2000, 2005, and 
2010 to systematically investigate the spatial–temporal distribution of 
vacant land at a fine scale. Li et al. (2019) conducted a case study of 
underutilized land in the rust belt city Changchun through visual 
interpretation of 1.0 m resolution satellite images in combination with 
field surveys. Similar UVL identification methods were adopted in case 
studies of Guangzhou city (Song et al., 2020) and Atibaia city (Sper-
andelli, Dupas, & Dias Pons, 2013). Despite the significance of these 
works, most of the existing studies based on the conventional manual 
identification method are focused on small-scale city areas. If applied to 
large-scale areas including many cities, the manual method has 
following two limitations: (1) the labour and time costs are too high, and 
(2) the identification results are usually highly variable due to the in-
dividual subjective differences in the identification criteria between 
different auditors. 

Automatic UVL identification methods, which can reduce labour and 
time costs and control result variability, have been attracting attention 
recently. Shukla and Jain (2020) used an object-based image analysis 
method to automatically extract urban vacant parcels from unmanned 
aerial vehicle data and achieved overall high accuracy. However, the 
study focused on a small area and lacked the variety of UVL. Xu and 
Ehlers (2022) defined four typologies of vacant land and applied a rule- 
based data fusion framework integrating remote sensing images, 
geographical information system (GIS) layers, and citizen science data. 
While a large number of vacant sites were identified in 63 urban and 
rural districts in Germany, they found it difficult to systematically detect 
brownfield land. 

With the rapid development of deep learning techniques in computer 
vision, basic remote sensing image segmentation tasks have been suc-
cessfully addressed by representative semantic segmentation models, 
including FCN (Long, Shelhamer, & Darrell, 2015), U-Net (Ronneberger, 
Fischer, & Brox, 2015), SegNet (Badrinarayanan, Kendall, & Cipolla, 
2017), and DeepLab (Chen, Papandreou, Kokkinos, Murphy, & Yuille, 
2017; Chen, Papandreou, Schroff, & Adam, 2017; Chen, Zhu, Papan-
dreou, Schroff, & Adam, 2018), which are potential tools to realize 
large-scale automatic UVL identification. To put it into practice, there 
are two main challenges: (1) developing the technical framework for 
accurate and efficient automatic UVL identification and (2) solving the 
problem of criteria inconsistency in large-scale cross-domain UVL 
identification. 

To address these challenges, this research proposes a large-scale 
automatic identification framework of UVL based on semantic seg-
mentation of HRRS images and city stratification. The main contribu-
tions of this paper are (1) realizing automatic UVL identification based 
on semantic segmentation of HRRS images, which can efficiently obtain 
accurate results, and (2) introducing city stratification for large-scale 
cross-domain UVL identification, which can effectively deal with the 
problem of identification criteria inconsistency. Results of a case study 
on 36 major Chinese cities prove that the proposed framework has good 
accuracy, high stability, high efficiency and strong robustness for large- 
scale UVL identification. The framework provides a practical approach 
to large-scale UVL identification in various countries and regions, which 
is of great significance for the advancement of UVL studies worldwide. 

The remainder of this paper is structured as follows. In Section 2, the 
study area and data are introduced. Section 3 presents the methods of 
large-scale automatic identification of UVL, including city stratification, 
data labelling, model training, and prediction and postprocessing. 

Section 4 shows the results, including framework performance evalua-
tion, UVL identification results of 36 cities, and framework robustness 
tests and ablation study. The discussion and conclusions are shown in 
Section 5. 

2. Study area and data 

In this paper, 36 municipalities, provincial capitals, and sub-
provincial cities in China (Fig. 1) were chosen to study the nationally 
large-scale automatic identification framework of UVL. These large 
cities are distributed in various provinces across the country, repre-
senting the urban development of their respective provinces and 
exhibiting diverse geographical features and urban forms. 

The Google Earth HRRS images of the 36 cities were downloaded 
from BIGEMAP (www.bigemap.com), with three red–greenblue bands 
and a spatial resolution of approximately 0.3 m. We chose the images 
taken in the summer or autumn of 2019, which met the following re-
quirements to maintain good data quality: (1) the surface vegetation of 
all the cities was in a growing state, and (2) the cloud interference was 
controlled at a very low level. For the urban boundary data, because the 
administrative divisions of Chinese cities are much larger than their 
actual urban development scope, we used 36 cities’ central urbanized 
areas instead of the traditional administrative areas (generally the 
largest urban patch among all patches in a city). The adopted urbanized 
areas of Chinese cities were proposed by Ma and Long (2019), which are 
contiguous urban built-up areas at the community scale extracted from 
the superposition analysis of the community areas and urban construc-
tion lands. 

3. Methods 

To achieve accurate and efficient UVL identification for all 36 large 
cities, we proposed a large-scale automatic identification framework, 
which consisted of four steps (Fig. 2): (1) city stratification, (2) data 
labelling, (3) model training, and (4) prediction and postprocessing. The 
goal and the contents of each step are introduced below. 

3.1. City stratification 

In large-scale areas including various cities, the characteristics of the 
vacant lands and non-vacant lands are usually divergent among different 
city categories, which leads to inconsistency in UVL identification 
criteria. To address the problem, we proposed a city stratification 
scheme, including (1) stratifying the cities into different categories and 
(2) selecting a representative city in each category to establish a model 
for UVL identification in the rest of the cities. 

The principle of city stratification was to reach a balance between 
performance and cost. First and foremost, the features of the vacant 
lands and non-vacant lands in different categories should be stratified 
clearly. Second, the total cost of model establishment in all categories 
should be as low as possible, which requires that the number of cate-
gories should not be too large. 

To apply city stratification, we investigated the features of vacant 
lands and non-vacant lands in the 36 cities. In this paper, urban vacant 
land refers to ‘the lands completely vacant without any developed use, 
or the lands that are demolished, derelict, or under early-stage con-
struction within the urban built-up area’ (Li et al., 2018). To further 
specify and standardize the UVL definition, five professional auditors 
independently identified the UVL in the same test areas in ArcGIS10.6, 
cross-validated the results and discussed the differences. After three 
rounds of cross-validation tests (Appendix A), the auditors finally 
reached a consensus on the specific identification criteria of various 
types of vacant land and non-vacant land with similar features (see Fig. 3 
for examples). According to the identification criteria, we made careful 
observation of the HRRS images of all 36 cities and found that major 
types of vacant land and non-vacant land in a city were related to 
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vegetation and thus generally influenced by geographical location and 
climate. Following the principle of city stratification and taking into 
account the physico-geographical regionalization of China, we stratified 
the 36 cities into three categories: southern, northern-A, and northern-B, 
whose spatial distribution is shown in Fig. 1. Each category had different 
types of vacant land and non-vacant land, leading to different UVL 
identification criteria. The common and different aspects of the UVL 
identification criteria of the three city categories are summarized in 
Table 1. 

Subsequently, the five auditors made a general assessment of the 
typicality of the vacant land and non-vacant land in every city according 
to the observation of the HRRS images and selected Shenzhen, Beijing, 
and Lanzhou as the representative cities from southern, northern-A, and 
northern-B categories, respectively. We trained one semantic segmen-
tation model per representative city (three models in total) and used it to 
predict the UVL in other cities within the same city category. The models 
were trained with labelled data. The data labelling process is explained 
in Section 3.2 and the model training process is explained in Section 3.3. 

3.2. Data labelling 

The goal of data labelling was to obtain high-quality labelled data for 
model training. In each representative city, we chose training and test 
tiles (4 km × 4 km) as the label area. To guarantee a good model training 
effect, the training tiles should meet the requirements as follows: (1) 
covering a wide variety of urban vacant land and non-vacant land to 
enhance the robustness of the model, (2) maintaining a relatively high 
vacancy rate to reduce model bias caused by the data imbalance prob-
lem, and (3) ensuring a sufficient number of tiles to control the 

overfitting problem. The test tiles were not used for model training, but 
for robustness tests in Section 4.3, thus only needed to satisfy require-
ment (1) to fully test the model performance. According to the above 
requirements, the training and test tiles were selected through obser-
vation of the HRRS images of the whole representative cities by pro-
fessional auditors. It should be mentioned that a smaller tile size was 
also applicable but more tiles would be needed to offer sufficient model 
training data. After the determination of the label area, five professional 
auditors finely delineated the UVL to obtain refined labels, as shown in 
Fig. 4. 

After labelling, there were two steps for data preprocessing. First, in 
order to balance the overall and detailed features of vacant land in the 
images, export the training and test datasets from ArcGIS with an 
optimal spatial resolution 1.6 m rather than the original resolution (see 
Appendix B for explanation). Second, split the images and labels into 
small patches as the model input data (224 px × 224 px). A training tile 
was split into 121 training patches of size 256 px × 256 px with edges 
partially overlapped to fully utilize the data, and a test tile was split into 
144 test patches of size 224 px × 224 px. 

3.3. Model training 

In this paper, we adopted the DeepLabv3 (Chen, Papandreou, 
Schroff, & Adam, 2017) model, which is one of the best methods for 
image segmentation (Chen et al., 2019). The model acquires a large 
receptive field based on the encoder ResNet (He, Zhang, Ren, & Sun, 
2016) pretrained in ImageNet (Deng et al., 2009) and atrous spatial 
pyramid pooling consisting of parallel convolution with different 
expansion rates. 

Fig. 1. Locations, categories and representative cities of 36 major cities in China.  
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The goal of the model was to discover as much true UVL as possible 
while maintaining a relatively high accuracy to reduce the cost of the 
necessary manual refinements on the results. In this paper, the precision 
(Equation (1)) indicated the proportion of the true UVL to all the UVL 
identified by the model, representing the model’s accuracy, whereas the 
recall (Equation (2)) indicated the proportion of the true identified UVL 
to all the UVL in the given samples, reflecting the model’s capability of 
discovering the true UVL. Considering the goal, both metrics were 
important, but the recall was more important. Therefore, we introduced 
the Fβ-score (Equation (3)), a metric that combines precision and recall, 
and uses the β parameter to control their relative weights (Duque, Pat-
ino, & Betancourt, 2017). A value of β = 1 gives equal weights to the 
precision and the recall, whereas a value of β = 2 prioritizes the recall. 
Therefore, we chose F2-score as the final model evaluation metric. 

precision =
TruePositives

TruePositives + FalsePositives
(1)  

recall =
TruePositives

TruePositives + FalseNegatives
(2)  

Fβ = (1 + β2)⋅
precision⋅recall

(β2⋅precision) + recall
(3) 

In the model training process, the training patches obtained in Sec-
tion 3.2 were divided into the training set and the validation set. The 
training set contained 75 percent of the patches while the validation set 
contained the rest. We used the training set to train the neural network 
parameters and the validation set to evaluate the model validation F2- 
score. We trained a series of models with different backbones and 
training techniques (see Appendices C and D) and selected the best 
models for final prediction. 

3.4. Prediction and postprocessing 

The goal of prediction and postprocessing was to acquire high- 
quality UVL identification results in the shapefile format. To realize 
the goal, we used softmax outputs of the semantic segmentation model 
and proposed the hybrid prediction and the edge optimization method 
to optimize the results. 

Without result optimization, the model outputs in this paper should 
be pixel-level binary classes (UVL and non-UVL). However, some 
problems arose when we directly output the UVL prediction results, 

Fig. 2. Large-scale automatic identification framework of urban vacant land. The red boxes relate to model establishment, and the blue boxes relate to prediction.  
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which are discussed in the following paragraphs. To further optimize the 
results, we used softmax layer outputs of the semantic segmentation 
model, i.e. pixel-level softmax scores (0 ~ 1) instead of binary values (0 
or 1). This method helped preserve the output information, which was 
fundamental for further optimization. 

Based on the city stratification defined in Section 3.1, UVL prediction 
using the representative city’s model within the same city category led 
to good results in all 36 cities except Chengdu, which was considered to 
be an atypical city. Labelling data and training models specially for 
Chengdu would cost too much. Through further observation on HRRS 
images, we found that Chengdu’s UVL features were not so typical and 
were mixed between the southern and northern-B city categories to 
some extent. Therefore, we used hybrid prediction by the southern and 
northern-B models, which improved the identification results in 
Chengdu without increasing the cost. The detailed effects are demon-
strated in Section 4.3 and Appendix G. The process of hybrid prediction 
in atypical cities was as follows: (1) select two or more city categories’ 
representative city models according to the UVL features of the atypical 
city, (2) predict UVL using the selected models one by one to obtain the 
corresponding softmax output maps, and (3) perform a weighted 
average on the multiple softmax score maps to obtain the final hybrid 

score map for further optimization. In Chengdu, the optimal combina-
tion of weights on the southern and northern-B model output maps was 
(0.5, 0.5). 

To acquire the final result in shapefile format, the softmax score map 
needed to be transformed into a black and white image. This was real-
ized by directly truncating the 0 ~ 1 softmax scores at 0.5, but the result 
was found to have spots on the edges (Fig. 5c), which caused difficulty in 
its conversion to shapefile format. To obtain clear edges, we introduced 
an edge optimization method whose effect is shown in Fig. 5d. The 
method consisted of the following two steps. (1) Smoothing. Blur the 
softmax score map to eliminate the spots and reduce noise while still 
keeping the general features clear. (2) Truncation. Set a threshold 
around 0.5. Transform the smoothed score map to a black and white 
image by setting the scores below the threshold to 0 and the others to 1. 
In this paper, we used the ‘cv2.blur()’ function in the OpenCV-Python 
library (Mordvintsev and Abid, 2017). Through visual observation, we 
chose the blur parameter ‘kernel size’ as (20, 20) and the truncation 
threshold as 0.6 to obtain the best edge optimization effect. 

The complete process of this part was as follows (Fig. 2): (1) obtain 
softmax output patches from the model, (2) merge the patches as a 
whole raster (.tif), (3) optimize the result using the proposed 

Fig. 3. Examples of vacant land and non-vacant land with similar features. (a) is bare land without film and weeds. (b) is land with demolished structures. (c) is the 
derelict hardened ground with garbage. (d) is land under early-stage construction. (e) is land with weeds. (f) is bare land covered with green film. (j) is land under 
late-stage construction. (l) is green farmland. (m) is brown woodland. 
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optimization methods including hybrid prediction (if needed) and edge 
optimization, (4) georeference the raster to its real location in ArcGIS 
using georeferencing tools, (5) convert the raster to shapefile format 
using ArcGIS ‘raster to polygon’ tool, and (6) calculate the area of 

polygons and delete small-area polygons which were considered to be 
noise. 

4. Results 

4.1. Framework performance evaluation 

The best models of the three city categories were selected after a 
series of parameter optimization (see Appendices B, C, and D for detailed 
comparisons). The final best validation F2-scores of the southern, 
northern-A, and northern-B models were 0.852, 0.888, and 0.817, 
respectively. The average best validation F2-score reached a satisfactory 
value of 0.852. 

To further evaluate the comprehensive performance of the frame-
work, we compared the accuracy and efficiency of the conventional 
manual identification method and those of the proposed automatic 
identification framework by the following two quantitative evaluation 
indicators. 

The accuracy indicator was the intersection over union (IoU) value 
between the identification results and the gold standard. The gold 
standard was the identification results decided by multiple professional 
auditors together. The IoU is the most popular evaluation metric for the 
similarity between two image segmentation results (Isola, Zhu, Zhou, & 
Efros, 2017; Wang et al., 2018; Zhang, Isola, & Efros, 2016), defined by 
Equation (4). 

IoU(A,B) = area(A ∩ B)/area(A ∪ B) (4) 

Table 1 
Common and different aspects of the vacant land identification criteria of the 
three categories of cities.  

City 
category 

Vacant land Non-vacant land with similar 
features 

All in 
common  

(a) Bare land without film and 
weeds  

(b) Land with demolished 
structures  

(c) Derelict hardened ground 
with garbage  

(d) Land under early-stage 
construction  

(g) Park or golf course  
(h) Parking lot  
(i) Hardened ground in good 

condition  
(j) Land under late-stage 

construction 

Southern  (e) Land with weeds  (k) Green woodland  
(l) Green farmland 

Northern-A  (f) Bare land covered with green 
film  

(m) Brown woodland  
(n) Brown farmland  
(o) Woodland covered with 

green film 
Northern-B  (e) Land with weeds  

(f) Bare land covered with green 
film  

(k, m) Green or brown 
woodland  

(l, n) Green or brown 
farmland  

(p) Grassland in good 
condition  

Fig. 4. Labels and tiles of the representative cities. The vacancy rates in the training tiles of Beijing, Shenzhen, and Lanzhou are 17.9%, 11.8%, and 7.7%, 
respectively. 

Fig. 5. Comparison between the optimized and non-optimized results. (a) is the image. (b) is the ground truth. (c) is the non-optimized result with spots (in red 
circles) on the edges. (d) is the optimized result with clear edges. 
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The five Beijing test tiles shown in Fig. 4 were used for accuracy 
evaluation (Appendix E). In each tile, one auditor was selected from the 
five professional auditors in turn to give the manual identification result, 
while the rest four auditors decided the gold standard together. The 
automatic identification results were predicted using the best Beijing 

(northern-A) model. For both manual and automatic methods, the IoU 
value between the identification result and the gold standard were 
calculated. As a result, the average IoU of the automatic framework 
reached 63.8%, over 90% that of the manual method (69.0%), which 
indicated that the accuracy of the automatic framework was very close 

Fig. 6. Identification results of urban vacant land of the 36 cities in part (4 cities in each category).  
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to the level of professional auditors. Furthermore, the automatic 
framework achieved a much smaller standard deviation of 5.1% 
compared to the manual method (16.9%), which indicated that the 
automatic framework achieved high stability and reliability and effec-
tively avoided high variance caused by the individual subjective dif-
ference of the auditors. 

The efficiency indicator was the time required to identify the UVL 
per 100 km2 urban area. For the manual method, the efficiency was 
simply the labelling efficiency, defined by Equation (5). For the auto-
matic framework, the total identification time was the sum of the 
manual labelling time, the model training time, and the prediction and 
postprocessing time, and the efficiency was defined by Equation (6). 

efficiencymanual = timelabel/arealabel (5)  

efficiencyautomatic =
(
timelabel + timetrain + timepredict

)/
areatotal (6) 

In this case, the times of labelling, training, and prediction were 64 h, 
6 h, and 4 h, respectively. The labelling area and the total area were 704 
km2 and 12,711 km2, respectively. According to Equations (5) and (6), 
the efficiency of the manual method was 9 h/100 km2, while the effi-
ciency of the automatic framework was 0.6 h/100 km2, 15 times higher 
than the former. 

Overall, compared to the conventional manual method, the proposed 
automatic identification framework achieved good accuracy, high sta-
bility, and high efficiency. 

4.2. Identification results of 36 cities 

The 36 cities’ UVL identification results and the corresponding key 
statistical data are partly shown in Fig. 6 and Table 2, respectively, 
including various kinds of information, such as the vacancy rate, the 
spatial distribution, and other statistical properties of UVL on all scales. 

According to the data in Table 2, the UVL rates of the 36 major cities 
except for Nanchang were all less than 10%, and the average UVL rate of 
the 36 cities was 4.9%, which was close to the UVL rate of New York City 
(5.08%) and much less than the average UVL rate of 65 typical shrinking 
cities in the United States (11.48%) (Song et al., 2020). This reflected 
that urban shrinkage in the 36 Chinese cities was generally unapparent. 
The data also revealed an interesting discovery: cities with larger urban 
areas tended to have a higher UVL rate, although the trend was not that 
obvious. This might reveal a possible phenomenon in which larger cities 
are more prone to disordered urban expansion and urban shrinkage. 

From Fig. 6, three patterns of the spatial distribution of UVL were 
extracted: (1) the UVL is scattered in the whole urban area with a 
generally even distribution of the UVL density, e.g., Changsha and 
Harbin, (2) the UVL density increases gradually from the centre to the 
periphery of the urban area, e.g., Beijing and Chengdu, and (3) the UVL 
is concentrated in several parts of the urban area, e.g., Jinan. These 
patterns can be used to analyse the patterns of urban sprawl and 
shrinkage of each city in further studies. 

4.3. Framework robustness tests and ablation study 

Robustness is very important in large-scale automatic UVL identifi-
cation. To test the robustness of the proposed framework, we carried out 
experiments of self-prediction, inter-category cross-prediction, intra- 
category prediction, and hybrid prediction on the best models of the 
three city categories. We also trained a hybrid model using the training 
tiles of all three representative cities to perform an ablation study on 
stratified prediction. The results (Appendices F, G, and H) proved that 
the framework based on city stratification had strong robustness for 
large-scale UVL identification and that using stratified prediction by the 
three models performed better than using one hybrid model. 

In the self-prediction experiment, the model of each category was 
used to identify UVL on the test images of the training city. The results 
(see red boxes in Appendix F) showed that all the models were capable of 

identifying the majority of the UVL and accurately delineating their 
shapes, which proved that all three models were well trained. 

In the inter-category cross-prediction experiment, the model of each 
category was used to identify UVL on the test images of the represen-
tative cities of the other two categories. As expected, the cross- 
prediction results were poor. The average IoU between the results and 
the ground truth was 39.6%. The northern-A model was not capable of 
identifying approximately half of the UVL in the other two categories, 
while the southern and northern-B models over-identified the UVL in the 
northern-A category. The cross-prediction results of the southern and 
northern-B categories seemed to be acceptable on a large scale, but the 
details were not satisfactory. This experiment reflected that there were 
significant inter-category differences between the three categories of 
cities, which proved the necessity of city stratification. 

In the intra-category prediction experiment, one city other than the 
representative city was selected randomly (except Chengdu) from each 
category to offer test images for the same category’s model to identify 
UVL. The results (Appendix G) showed that all three models were 
capable of identifying the majority of the UVL and extracting quite ac-
curate shapes within the same city category, which proved the effec-
tiveness of city stratification and reflected the good generalization 
ability of the three models in their categories. 

The hybrid prediction experiment using models of southern and 
northern-B categories was carried out on the atypical city Chengdu. As 
shown in Appendix H, the southern model over-identified some build-
ings as UVL, while the northern-B model under-identified land with 
weeds. By using hybrid prediction, the results took advantage of the two 
models and showed accurate identification of land with weeds and no 
over-identification of buildings. This experiment indicated that even 
dealing with the atypical city where intra-category prediction performed 

Table 2 
Statistical data of the vacant land identification results in the 36 cities.  

Category City Urban area 
(km2) 

UVL area 
(km2) 

UVL rate 
(%) 

Southern Changsha  260.8  8.6  3.3 
Chengdu  472.8  24.6  5.2 
Chongqing  290.6  7.6  2.6 
Fuzhou  124.3  5.2  4.2 
Guangzhou  335.3  19.4  5.8 
Guiyang  78.9  0.8  1.0 
Haikou  94.4  3.0  3.2 
Hangzhou  209.5  10.7  5.1 
Hefei  233.4  13.8  5.9 
Kunming  195.0  11.5  5.9 
Nanchang  197.8  24.7  12.5 
Nanjing  656.2  43.3  6.6 
Nanning  239.9  7.7  3.2 
Ningbo  145.1  6.4  4.4 
Shanghai  830.4  63.1  7.6 
Shenzhen  844.7  42.2  5.0 
Wuhan  451.3  19.4  4.3 
Xiamen  79.6  1.9  2.4 

Northern- 
A 

Beijing  1694.9  159.3  9.4 
Jinan  292.5  16.7  5.7 
Qingdao  497.4  20.9  4.2 
Taiyuan  461.9  29.6  6.4 
Tianjin  556.6  28.4  5.1 
Xi’an  313.5  12.2  3.9 
Zhengzhou  340.6  18.7  5.5 

Northern-B Changchun  272.6  18.0  6.6 
Dalian  454.2  26.8  5.9 
Harbin  359.7  6.5  1.8 
Hohhot  174.0  6.8  3.9 
Lanzhou  147.5  6.8  4.6 
Lhasa  38.1  0.7  1.9 
Shenyang  595.9  19.1  3.2 
Shijiazhuang  372.0  23.4  6.3 
Urumqi  247.4  13.4  5.4 
Xining  57.4  2.0  3.5 
Yinchuan  94.9  3.1  3.3  

L. Mao et al.                                                                                                                                                                                                                                     



Landscape and Urban Planning 222 (2022) 104384

9

poorly, the proposed framework with hybrid prediction still had good 
robustness. Although the hybrid prediction method was only used in 
Chengdu in this case study, the method is of great importance improving 
robustness of the framework in large-scale areas including a lot of cities. 

To perform an ablation study on the effect of stratified prediction by 
the three representative city models, we trained one hybrid model using 
all the training tiles of the three representative cities for comparison. 
The best validation F2-score of the hybrid model was 0.850, close to the 
average F2-score 0.852 of the three models. Results showed that the 
hybrid model also had good robustness, as it was capable of identifying 
the majority of the UVL and extracting quite accurate shapes in cities of 
all three categories (Appendix G) and even in the atypical city Chengdu 
(Appendix H). This was reasonable because the hybrid model was 
trained with various types of UVL in all three city categories. Despite its 
robustness, its accuracy on the details was a bit lower than that of the 
framework with stratified prediction using the three models. In Ap-
pendix G, the hybrid model under-identified land with weeds in 
Shanghai and over-identified green farmland in Dalian while the 
framework with stratified prediction did not. The results of the hybrid 
model in Appendices F, G, and H also had more noise compared to the 
framework. Therefore, the framework using stratified prediction by the 
three models performed better than using one hybrid model. 

5. Conclusions and discussion 

In this paper, we proposed a large-scale automatic identification UVL 
framework based on semantic segmentation of HRRS images and city 
stratification, applied the framework in a case study of 36 major Chinese 
cities, and obtained accurate and efficient UVL identification results. 

The large-scale automatic identification framework has performance 
advantages in comparison with the conventional manual identification 
method. First, using the automatic framework, the labour and time costs 

are greatly reduced, and efficiency can be increased by approximately 
15 times. Second, the results of the automatic framework are highly 
stable and reliable, and their variance is much lower than that of the 
manual method. Finally, the automatic framework can reach 90 percent 
accuracy of the level of professional auditors. 

The proposed framework based on city stratification has strong 
robustness and can perform well in various cities. City stratification is 
effective and necessary to achieve accurate large-scale UVL identifica-
tion, as it can distinguish the inter-category differences and reduce the 
intra-category differences so that each city category’s model can obtain 
good identification results within the category. For atypical cities where 
the intra-category model does not perform well, using hybrid prediction 
by multiple models can further improve the identification results. The 
framework using stratified prediction by multiple models performs 
better than using one hybrid model. 

Several problems remain to be solved in future work, including (1) 
city stratification by automatic methods such as clustering instead of the 
manual method adopted in this paper, (2) using automatic methods to 
exclude low-quality images in the training dataset instead of manual 
examination, (3) using HRRS images with more bands to include more 
UVL features, and (4) further verifying the reliability of the hybrid 
prediction with more atypical cities. 

6. Supplementary Material 

Supplementary data to this article is available online at https://data. 
mendeley.com/datasets/3c8myvygjj. 
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Appendix A. Cross-validation tests on vacant land identification criteria. 

Cross-validation results of three rounds of manual identification by five professional auditors in the process of establishing consensus on vacant 
land identification criteria. To include various kinds of vacant land and non-vacant land in southern and northern cities in China, two tiles of size 4 km 
× 4 km, one in Shenzhen (southern city) and one in Beijing (northern city), were selected as test areas in each round. The IoU between the identi-
fication results of auditor 1 and the others are shown. The average IoU increases from 44.8% to 66.8%, which indicates that the five auditors 
established an acceptable consensus in Round 3.   

Auditor ID 1 & 2 1 & 3 1 & 4 1 & 5 Average Standard deviation 

Round 1 IoU (%)  52.5  52.3  34.1  40.2  44.8  7.9 
Round 2 IoU (%)  68.5  66.4  53.1  59.8  62.0  6.0 
Round 3 IoU (%)  73.1  70.9  59.4  63.7  66.8  5.5  

Appendix B. Parameter analysis of data spatial resolution.

Results of different data spatial resolutions (SRs) compared to the 
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ground truth. The result of 0.3 m SR is accurate in shape but full of noise, the result of 1.6 m SR is accurate with less noise, and the result of 5.0 m SR is 
less accurate. This implies that with high data SR, the model lacks a large view of images and focuses too much on details; with proper SR, the model is 
capable of learning necessary details with a large view and identify vacant land based on the combined features of the vacant land and its surrounding 
environment; with low SR, the model lacks enough details to identify vacant land accurately. Therefore, 1.6 m is a proper choice of SR. 

Appendix C. Parameter analysis of model backbones.

Identification results of vacant lands in Xi’an city using the northern-A model with different backbones. (a) is the satellite image, with the white 
part representing the area outside the city boundary. (b) is the result with strange textures using the backbone ResNet152, which indicates the severe 
overfitting problem and poor generalization ability of the model. (c) is the result of using the backbone ResNet18, which shows good generalization 
ability. 

Appendix D. Parameter analysis of key training techniques. 

Ablation study: the influence of the following key training techniques on model performance. (1) Learning rate decay, which can promote the 
model training when the model loss stops decreasing. (2) Weighted loss function, which can reduce model bias caused by the class imbalance problem 
in vacant land identification. (3) Data augmentation, which can enrich the training dataset and enhance the models’ generalization ability. The results 
show that all the key training techniques have significant effects on the improvement of model performance.   

Training techniques Best validation F2-score 

Baseline 0.859 
+ Learning rate decay 0.867 (+0.008) 
+ Weighted loss function 0.875 (+0.008) 
+ Data augmentation 0.888 (+0.013) 

Note. The values in parentheses indicate the increment compared 
to the step above. 

Appendix E. Results of accuracy evaluation. 

Accuracy evaluation results in five Beijing test tiles. In each tile, one auditor was selected from five professional auditors in turn to give the manual 
identification result, while the rest four auditors decided the gold standard together. The automatic identification results were predicted using the best 
Beijing (northern-A) model. For both manual and automatic methods, the IoU between the identification result and the gold standard in each tile are 
shown. The automatic method achieved an average IoU of 63.8%, over 90% that of the manual method (69.0%), with a much smaller standard 
deviation.   

Tile ID 1 2 3 4 5 Average Standard deviation 

Manual IoU (%)  70.7  66.0  39.4  90.2  78.8  69.0  16.9 
Automatic IoU (%)  65.5  65.4  55.1  70.8  62.4  63.8  5.1  
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Appendix F. Results of self-prediction and inter-category cross-prediction.

Self-prediction (in red boxes) and inter-category cross-prediction results of the models of three city categories and the hybrid model prediction 
results compared to the ground truth. The self-prediction results are accurate, which indicates that the models are well trained. The inter-category 
cross-prediction results are poor, which shows significant inter-category differences and proves the necessity of city stratification. The hybrid 
model prediction results are also quite accurate, because the hybrid model was trained with labelled data of all three representative cities. However, 
the hybrid model prediction results have more noise compared to the self-prediction results. 

Appendix G. Results of intra-category prediction.

Intra-category prediction results of the models of three city categories and the hybrid model prediction results compared to the ground truth. The 
intra-category results are quite accurate, which proves the effectiveness of city stratification and reflects the good generalization ability of the three 
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models. The hybrid model prediction results are generally good, but the details are not as accurate as the intra-category results, such as under- 
identification of land with weeds in Shanghai and over-identification of green farmland in Dalian. 

Appendix H. Results of hybrid prediction.

The identification results in Chengdu using the southern model, the northern-B model, the hybrid model, and the hybrid prediction by the southern 
and northern-B models compared to the ground truth. The southern model over-identifies some buildings, while the northern-B model under-identifies 
the land with weeds. The hybrid prediction result shows accurate identification of land with weeds and no over-identification of buildings. The hybrid 
model performs almost as well as the hybrid prediction method but with more noise. The results indicate that the framework with hybrid prediction 
and the hybrid model both have good robustness dealing with atypical cities. 
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