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A B S T R A C T   

Traffic noise, characterized by its highly fluctuating nature, is the second biggest environmental problem in the 
world. Highly dynamic noise maps are indispensable for managing traffic noise pollution, but two key difficulties 
exist in generating these maps: the lack of large amounts of fine-scale noise monitoring data and the ability to 
predict noise levels in the absence of noise monitoring data. This study proposed a new noise monitoring method, 
the Rotating Mobile Monitoring method, that combines the advantages of stationary and mobile monitoring 
methods and expands the spatial extent and temporal resolution of noise data. A monitoring campaign was 
conducted in the Haidian District of Beijing, covering 54.79 km of roads and a total area of 22.15 km2, and 
gathered 18,213 A-weighted equivalent noise (LAeq) measurements at 1-s intervals from 152 stationary sampling 
sites. Additionally, street view images, meteorological data and built environment data were collected from all 
roads and stationary sites. Using computer vision and GIS analysis tools, 49 predictor variables were measured in 
four categories, including microscopic traffic composition, street form, land use and meteorology. Six machine 
learning models and linear regression models were trained to predict LAeq, with random forest performing the 
best (R2 = 0.72, RMSE = 3.28 dB), followed by K-nearest neighbors regression (R2 = 0.66, RMSE = 3.43 dB). The 
optimal random forest model identified distance to the major road, tree view index, and the maximum field of 
view index of cars in the last 3 s as the top three contributors. Finally, the model was applied to generate a 9-day 
traffic noise map of the study area at both the point and street levels. The study is easily replicable and can be 
extended to a larger spatial scale to obtain highly dynamic noise maps.   

1. Introduction 

Frequent exposure to high levels of noise can lead to physical and 
psychological problems in residents such as hearing impairment (Wang 
et al., 2021), cardiovascular disease (Begou et al., 2020; Zhang et al., 
2023), type 2 diabetes (Sørensen et al., 2022), irritability (Paiva et al., 
2019), anxiety (Lan et al., 2020), and poor mental health (Klompmaker 
et al., 2019). In addition, noise has been shown to be associated with a 
decrease in biodiversity (Halfwerk et al., 2011). With rapid urbaniza-
tion, complex urban road networks and dense traffic flows make traffic 
noise the most dominant type of noise (Thakre et al., 2020) and the 
second most important environmental problem (Morel et al., 2012; 
Shukla et al., 2012). Traffic noise is featured by its highly fluctuating 
nature and the construction of highly dynamic noise maps can be used to 
assess and effectively manage traffic noise pollution. However, there are 
two main challenges in constructing noise maps, including acquiring 

large amounts of noise monitoring data with both fine-level spatial and 
temporal resolution as well as predicting dynamic noise levels without 
noise monitoring data (Lan and Cai, 2021). 

Noise monitoring can be done through stationary or mobile methods. 
Stationary noise monitoring stations provide accurate noise data with 
high temporal resolution (Mioduszewski et al., 2011; Zambon et al., 
2018), but have limited spatial coverage due to high construction and 
maintenance costs (Monti et al., 2020). In contrast, mobile monitoring 
that performed by researchers on bicycles (Quintero et al., 2021; 
Quintero et al., 2019) or on foot (Guillaume et al., 2019), carrying 
professional sensors (Quintero et al., 2021; Quintero et al., 2019) or 
smartphones (Leao et al., 2014; Zappatore et al., 2016), provides higher 
spatial resolution but lower temporal resolution due to short stay pe-
riods while constantly moving. In addition, the movement speed of data 
collectors is generally low because the noise generated by high-speed 
movements affects the accuracy of the data (Guillaume et al., 2019), 
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which means that it is more time-consuming and labor-intensive to 
achieve monitoring over large geographical areas. Recently, smart-
phones have widened the scenarios of mobile monitoring due to their 
high occupancy. Several mobile applications supporting noise moni-
toring have emerged, e.g., Noisespy (Kanjo, 2010), NoiseProbe (Ghosh 
et al., 2019), but the accuracy of noise data acquired by cell phones is 
still far lower than that of professional sensors (Lu et al., 2009). 
Therefore, it is essential to develop an effective monitoring method that 
could acquire precise noise data with both high temporal and spatial 
resolution. 

For predicting noise levels, predictor variables can be basically 
categorized into four types: traffic composition, street form, land use, 
and meteorology, which essentially represent noise sources and noise 
transmission (Garg and Maji, 2014; Nijland and Van Wee, 2005). While 
street form, land use and meteorological variables are static, traffic 
composition variables are dynamic and considered the dominant traffic 
noise sources. Microscopic traffic flow characteristics, such as the 
number of vehicles and pedestrians passing per second, are more rele-
vant to dynamic traffic noise and can be identified through visual im-
ages. High coverage open-source street view images (Kang et al., 2020; 
Anguelov et al., 2010) and road surveillance videos (Sun et al., 2022) 
provide potential data for prediction. For example, Ibili and Owolabi 
(2019) collected traffic flow data and speed data from a digital video 
recorder, while Thakre et al. (2020) used a digital camera Fujifilm 
Finepix S3300. However, these studies have manually calculated these 
microscopic traffic composition variables, resulting in limited samples 
and labor-intensive work. Image-based deep learning models, such as 
segmentation and object detection, provide automatic analysis tools for 
extracting traffic information from images (Gebru et al., 2017; Yan and 
Ryu, 2021; Sun et al., 2022). 

In addition, several studies in recent years have demonstrated the 
advantages of machine learning models, such as neural networks (NNs), 
extreme gradient boosting (XGB), in noise prediction (Genaro et al., 
2010; Yin et al., 2020; Fallah-Shorshani et al., 2022). However, most 
studies (Ryu et al., 2017; Chang et al., 2019) still use statistical and land 
use regression methods, ignoring the complex nonlinear relationships 
and interactions among the predictor variables. 

In summary, there are still three significant gaps in existing studies, 
including 1) current monitoring methods have limitations in generating 
accurate large-scale dynamic noise maps requires noise monitoring data 
with high spatial and temporal resolution; 2) microscopic traffic 
composition variables that change rapidly over time, have not been 
measured in large samples, such as numbers of vehicles and people 
present at a given location and time; 3) the complex relationships be-
tween predictor variables and traffic noise are not adequately 

considered in the construction of noise prediction models. 
In view of this, this study aims to construct high-precision dynamic 

noise maps over a large geographical area. Firstly, this study developed a 
new noise monitoring method called Rotating Mobile Monitoring 
method (RMM), which combines the advantages of stationary and mo-
bile monitoring methods to achieve the collection of high precision noise 
data with high spatial and temporal resolution, but with less human 
labor and time to acquire. Secondly, along with the noise data, video 
data and meteorological data were collected and processed to measure 
microscopic traffic composition and meteorological variables, respec-
tively. Thirdly, machine learning methods were applied to achieve fast 
data processing and accurate prediction model construction. Finally, 
traffic noise mapping was completed with high accuracy and full spatial 
coverage. 

2. Materials and methods 

The overall methodology proposed for the traffic noise monitoring, 
modelling and prediction in this study has been shown in Fig. 1, 
including five procedures: variable selection, data retrieval, variable 
measurement, noise prediction modeling and traffic noise mapping. 

2.1. Study area 

As the capital and second largest city in China, Beijing has high- 
dense road networks and heavy traffic volumes, producing serious 
traffic noise pollution. Our study area is located in the Haidian district of 
Beijing, covering four townships of Qinghuayuan, Zhongguancun, 
Yanyuan and Shuangyushu. Within this area, there is a wide mixture of 
urban land use, including core commercial areas (urban sub-centers), 
top-ranked universities, residential communities, parks, as well as 
roads of different grades (Fig. 2). The total area is 22.15 km2 and the 
total length of the research roads is 54.79 km. 

2.2. Variable selection 

The predictor variables included four categories: microscopic traffic 
composition, street form, land use and meteorology. The variables were 
initially selected based on a literature review (Table 1). Specifically, 
street form variables, such as greenspace provisions and building forms, 
reflect attenuation between noise source locations and receiver locations 
(Fallah-Shorshani et al., 2018). While other street form variables, 
including road width, distance to the junctions, and transportation fa-
cilities, could be served as noise sources (Lu et al., 2019; Fallah-Shor-
shani et al., 2018). Meteorological variables, such as air temperature 

Fig. 1. Methodology.  

Y. Zhang et al.                                                                                                                                                                                                                                   



Environmental Research 229 (2023) 115896

3

and relative humidity, attenuate noise levels through atmospheric ab-
sorption (Liptai et al., 2015). Microscopic traffic simulations have 
incorporated vehicle counts as input to reveal the causal chain between 
traffic noise and road features in Dalian, China (Lu et al., 2019). Nourani 
et al.(2020) also predicted dynamic traffic noise in Nicosia, North Cypru 
using the number of various vehicles as a predictive variable. 

The final list of variables was adjusted to better suit our research 
questions (Table 2). The differences from previous studies are stated as 
follows: first, considering that our study area is in an urban center with 
high population density, the noise caused by pedestrians cannot be 
ignored. Therefore, this study included the variables related to pedes-
trians as traffic composition variables. In addition to identifying 
numbers, this study also calculated view index variables in microscopic 
traffic composition category, including view indices of cars, trucks, 
buses, mopeds, bicycles and pedestrians, which can, to a certain extent, 
reflect the distance to these noise sources. Also, highest view indices in 
the last 3 s were chosen as variables to account for noise that may have 
reached the camera field of view before the vehicle appeared in the 
image. In the street form category, this study also added six view index 
variables, including view indices of sky, buildings, trees, grass, plants 
and fences. These variables reflect street form from the human eye’s 
perspective, i.e., the human perception of the environment, and are also 
related to the attenuation of traffic noise. In the land use category, four 
types of land use, including residential communities, schools, urban 
parks and shopping malls and hotels, were selected, as they ranked 
highly in terms of size. 

2.3. Data retrieval 

2.3.1. RMM data 
Compared to stationary monitoring method, the mobile monitoring 

method expands the spatial coverage but also has a limitation that the 
sampling time is extremely short at each sampling location. Therefore, 
this study proposed a new noise monitoring method called Rotating 
Mobile Monitoring (RMM) method, which was inspired by the work in 
Accra, Ghana (Clark et al., 2022). With highly spatially and temporally 
heterogeneous characteristics, the noise varies dramatically from time 
to time even at the same geographical location. To capture the spatial 
and temporal variation of A-weighted equivalent noise (LAeq in deci-
bels, dB) and its sources per second across the study area, this study 
combined the advantages of stationary and mobile monitoring methods 
by rotating the stationary sampling sites during a mobile monitoring 
campaign. Mobile routes covered every street in the study area, and 
ArcMap’s Find Shortest Path tool was used to calculate and obtain routes 
for navigation in each acquisition. The stationary sampling points were 
feature points in each street, representing a variety of urban character-
istics, including narrow and wide roads, proximity and distance from 
intersections, sparse and dense built-up areas, and high and low pro-
portions of green space. To enhance the spatial heterogeneity of noise, 
this study did not select the same sampling location every day. Finally, 
152 stationary sampling locations were determined (Fig. 3). 

For the sampling time, it is hard to achieve high spatial coverage in a 
short period of time if the sampling time for each location is too long. 
However, if the sampling time is too short (less than 30 s), it is also 
impossible to cover a wide range of traffic conditions. Therefore, for 
intersections equipped with traffic signals, it is necessary to wait at least 
one full round of signals from red to green, about 120 s. For other points 
on the street, it is necessary to stay 1–3 min at a time in order to cover 
the variation from free traffic conditions to busy traffic conditions. The 
mobile route and stationary sampling locations were presented in Fig. 3. 
The monitoring route was on the bike lane, about 2–3 m away from the 
pavement, and the sound of normal human conversation had no sig-
nificant effect on the traffic noise. 

During the RMM campaign, an electric bicycle (e-bike) was deployed 
to carry professional monitoring devices in order to monitor a large 
geographical area in a short time (Fig. 4). E-bikes have the advantages of 
being electric-motivated, meaning that no sound when being at still, no 
emissions, and an average speed of 20 km/h (a maximum speed of 35 
km/h). A professional noise meter (Smart Sensor AR844) was used to 
collect LAeq noise data at 1-s intervals with a 1-s sampling frequency. 
The noise meter had a resolution of 0.1 dB, a measurement range of 
30–130 dB, and an accuracy of ±1.5 dB. During data collection, the 
noise meter’s microphone was always aimed at the road ahead and 
positioned away from the researcher’s body to minimize any noise re-
flections. The researcher refrained from speaking to avoid distorting the 
accurate measurement of noise. Along with the noise meter, the e-bike 
was equipped with a GoPro 9 camera, which was also pointed ahead of 
the road and used to collect real-time street video data at 60 Hz, and a 
customized mobile meteorological station with a sampling frequency of 
1 s, which was used to collect PM2.5, air temperature and humidity. 
During each RMM period, the GoPro 9 and mobile meteorological sta-
tion were sampling all the time to acquire street view images and 
meteorological conditions while moving and rotating fixed sampling 
points. The Footpath GPS recording application on the smartphone 
(iPhone 12 Pro Max) was also turned on to record the GPS tracks of the e- 
bike. The time of all the devices were synchronized with the smartphone 
to ensure that the timeline of the data collected by each device remains 
consistent. 

This study was conducted over nine weekdays from July to August 
2022, selecting only rain-free days. Data was collected every day from 
12:00 to 16:00 before the evening rush hours. However, due to sudden 
rain on August 8th, the last 3 km of the route could not be completed, 
resulting in missing data for that section. In total, this study obtained a 

Fig. 2. Study area and grades of monitoring route.  
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total of 18,213 LAeq data from 152 stationary sampling sites, 350 GB of 
video data and 80,998 meteorological data from 54.79 km of roads. 

2.3.2. Built environment data 
The road network data, land use data and building footprint data was 

all acquired form Gaode Map, one of the leading map service providers 
in China. The road network data for 2021 was provided in shapefile 
format (.shp) and included information on the length and width of 
major, secondary, and branch roads. This data was used to generate 
mobile routes, extract road grades and widths at monitoring points, and 
measure the distances from sampling points to intersections in order to 
improve our understanding of traffic noise patterns in the study area. 
The Area of Interest data from 2021 was used to represent land use 
patterns, which describe the specific boundaries of each type of land use, 
including residential areas, schools, parks and shopping centers. The 
building footprint data for 2021 (.shp) included building shapes and the 
number of floors, and was used to measure building footprint area and 
floor area ratio (FAR). The green space data was extracted from a 1.07 m 
spatial resolution Google Earth image as of September 18, 2020, as it 
shows distinct green space and less shading from buildings and trees. 

2.4. Variable measurement 

This study identified 49 traffic noise related variables, which can be 
categorized into four categories (Table 2). Regarding different data 
sources, 22 variables were extracted from video data, 9 from road 
network data, 8 from land use data, 4 from building footprint data, 2 
from remote sensing data and 4 from meteorological data. 

The video and meteorological data collected by RMM were used to 
measure microscopic traffic composition variables and meteorological 
variables, respectively, while built environment data were used to 
measure street form variables. 

For microscopic traffic composition variables, video data were used 
to extract features using two computer vision methods – object detection 
and segmentation. First, videos were converted to frames at 1-s intervals 
using OpenCV-Python package, while the timestamp of each frame was 
inferred from the modification time of the video file that recorded the 
end time of the video. The coordinates of each frame were retrieved by 
concatenating them with the timestamps of GPS coordinates. Second, to 
identify the traffic around the sampling points, an object detection 
model was used to identify the number of pedestrians, bicycles, cars, 
motorcycles, buses, trains, trucks, stop signs and parking meters in each 
frame. The YOLOv7 model trained on MS COCO datasets from scratch 
presented in the paper (Wang et al., 2022) was used for detection with 

Table 1 
An overview of the variables used in previous studies.  

Publication Traffic composition Street form Meteorology 

Fallah-Shorshani 
et al. (2018) 

Average hourly traffic volume within 
various Euclidean buffers 

Euclidean distance to the shore, to the 
closest airport, to the rail line, to the 
highway, to the nearest major road; 
building footprint area, areas of different 
types of land use (commercial, 
governmental and institutional, resource 
and industrial, parks, residential, open 
area, and water), lengths of different types 
roads (highway, major roads, local roads, 
and bus routes), numbers of intersections, 
bus stops, trees and chimneys, and the 
average and maximum building height 
within the Euclidean buffers 

Distance to chimneys emitting 
Nitrogen Oxides or Particulate Matter. 

Mansourkhaki et al. 
(2018) 

Total traffic volume per hour, average 
speed of vehicles, percentage of each 
category of vehicles 

Road gradient, density of buildings around 
the road section and building reflection 
factor 

– 

Ahmed and 
Pradhan (2019) 

Number of different vehicles (cars, 
heavy vehicles, motorbikes) per 15 min, 
sum of vehicles and ratio of different 
vehicles (cars, heavy vehicles, 
motorbikes) 

Highway density, digital surface model 
and digital elevation model 

Wind speed 

Quintero et al. 
(2019) 

Number of light vehicles, medium 
heavy vehicles, heavy vehicles, and 
bikes passes-by, and traffic flow 

Distance to the nearest cross street  

Chen et al. (2020) Per-vehicle noise value, vehicle type 
(heavy vehicle, medium vehicle, light 
vehicle), and vehicle velocity 

Roadway gradient – 

Thakre et al. (2020) Number of different vehicles (light, 
medium, heavy vehicles) and number of 
honks 

– – 

Yin et al. (2020) Traffic volume, traffic density, and 
traffic speed 

Length of different types roads (motorway, 
primary, secondary, tertiary, residential, 
service and others), the distance to nearest 
road, the numbers of intersections of 
different grades (major-major， 
major–minor; major - minor; 
major–branch), the numbers of traffic 
signals, area of different types of land use 
(residential, commercial, industrial, and 
park), building area, maximum building 
height and percent tree canopy within 
Euclidean buffers 

Temperature, pressure, cloud cover, 
dew point, humidity, wind speed, 
wind direction, wind gust, and 12 
other meteorological variables 

Gilani and Mir 
(2021) 

Traffic volume per hour (excluding the 
volume of heavy vehicles), average 
traffic speed, number of heavy vehicles 
and number of honking events per hour 

Carriageway width –  
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an average precision of 56.8%, outperforming all known object de-
tectors in terms of speed and performance. Third, based on the 
assumption that objects have a distance effect, i.e., objects at close dis-
tances introduce larger noise, the view indices of objects were calculated 
to represent the distance, i.e., the closer the distance the larger the view 
index. A semantic segmentation approach with the DeepLab V3 model 
pre-trained on the MIT ADE20k datasets using Xception-65 as the base 
model was implemented in the Pixellib library to segment the afore-
mentioned traffic objects and to calculate the percentage of the pixels 
classified as each object in the total image pixels. In addition, to discover 
the objects behind the collecting bicycle, the maximum view indices of 
different traffic objects in the last 3 s were calculated to represent the 
front-to-back noise around the monitoring points. 

For street form variables, video, road network, building footprint and 
remote sensing data were used to measure these variables. The DeepLab 
V3 semantic segmentation model with the same parameters mentioned 
above was used to retrieve the view indices of the built environment 
components, including buildings, sky, trees, grasses, fences and plants. 
Meanwhile, ArcMap’s spatial join tool was used to connect the sampling 
points and road network data. The grade and width information of the 
road where each point was located was assigned to that point. The 
Euclidean distance from the sampling points to the intersections of 
different levels were measured by proximity analysis tool in ArcMap 
10.2. The K-Means clustering method in ENVI 5.3 was used to extract the 
green space vector data from the remote sensing images. Then, by 
referring previous studies (Chang et al., 2019; Yin et al., 2020), 100-m 
and 200-m Euclidean buffers of sampling points were generated in 
ArcGIS 10.2, and variables such as building density, floor area ratio 
(FAR), green area ratio and land use were calculated for each sampling 
point based on the association of buffers with green space and building 
footprint data. 

For land use variables, the top four land use types in the study area, 

including residential communities, schools, urban parks, and shopping 
malls were selected, and the land area within 100-m and 200-m 
Euclidean buffers was calculated using ArcMap 10.2 separately. 

For meteorological variables, PM2.5, temperature and humidity 

Table 2 
Summary of variables in this study.  

Variables Description Data types Method 

Traffic composition variables 
Number of different vehicles (cars, trucks, buses and mopeds) The number of corresponding objects 

in the image 
Video data Object detection algorithm 

Number of pedestrians 
Number of stop signs 
Number of parking meters 
View index of different vehicles (cars, trucks, buses and mopeds) View index of corresponding objects 

in the image 
Semantic segmentation algorithm 

Pedestrian view index 
Maximum view index of different vehicles (cars, trucks, buses and mopeds) Maximum view index of different 

vehicles in the last 3 s 
Street form variables 
Road grade Three grades: major, secondary and 

branch roads 
Road network 
data 

Spatial join tool in ArcMap 10.2 

Road width The width of the road 
Distance to the major road The Euclidean distance from the 

sampling points to the major road 
Proximity analysis tool in ArcMap 10.2 

Distance to the intersections of different grades (major–major; 
major–secondary; major–branch; secondary- secondary; secondary- 
branch; branch-branch) 

The Euclidean distance from the 
sampling points to the intersections 

Building density within Euclidean buffers (100m and 200m) The area of the building footprint 
within Euclidean buffers 

Building footprint 
data 

Analysis tools in ArcMap 10.2 

Floor area ratio (FAR) within Euclidean buffers (100m and 200m) The area of the building floor area 
within Euclidean buffers 

Green area ratio within Euclidean buffers (100m and 200m) The area of the green space within 
Euclidean buffers 

Remote sensing 
data 

K-Means clustering method in ENVI 
5.3 and analysis tools in ArcMap 10.2 

View index of built environment indicators (building, sky, tree, grass, 
plant, fence) 

View index of corresponding objects 
in the image 

Video data Semantic segmentation algorithm 

Land use variables 
Land areas of Residential communities, schools, urban parks, and shopping 

malls within Euclidean buffers (100m and 200m) 
The area of the corresponding land 
use type within Euclidean buffers 

AOI data Analysis tools in ArcMap 10.2 

Meteorological variables 
PM2.5 Meteorological variables value at the 

moment of noise monitoring 
Meteorological 
data 

– 
PM10 

Temperature 
Humidity  

Fig. 3. Mobile routes and stationary sampling points in the RMM campaign.  
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value were directly extracted from the meteorological data, including 
timestamps and variable values at the moment of noise sensing. 

2.5. Noise prediction modeling 

Compared to linear regression (LN), machine learning methods are 
better able to address the multicollinearity issue and capture the 
potentially complex nonlinear relationships among variables. Therefore, 
this study trained six machine learning models using processed data and 
a total of 49 variables, including random forest regression (RF), K- 
nearest neighbors regression (KNN), gradient boosting regression (GB), 
decision tree regression (DT), support vector regression (SV) and Ada-
boost regression (AR). For comparison, this study also trained the linear 
regression (LR) model. Meteorological, street form and traffic compo-
sition variables were added to the different models in steps to distinguish 
the role of different categories of variables in noise prediction. All the 
models were implemented using scikit-learn, the most useful machine 
learning package in Python. Grid search function was used to discover 
the optimized parameters for each regression model. A 10-fold cross- 
validation technique is utilized to partition the training and validation 
datasets. 

2.6. Traffic noise mapping 

In order to visualize the spatial and temporal heterogeneity of LAeq 
and generate noise maps with high spatial resolution, this study made 
predictions of LAeq during mobile monitoring. First, video, meteoro-
logical data and GPS coordinates were all recorded during the RMM, and 
based on these data all predictor variables at 1-s intervals (about 6-m 
spatial interval, which is equal to 1 s times the average speed of 20 
km/h) were extracted according to the method above. Second, based on 
all models trained in the previous section, the model with the highest R2 

value was selected for prediction. In the last step, the predicted values of 
all points and street segments for each acquisition date were visualized 
in ArcGIS 10.2 software. 

3. Results 

3.1. Statistical summary 

The sample size, and descriptions of the noise data for the 9 dates of 
the RMM campaign are presented in Table 3. The total number of 
measured traffic noise (N = 18,213) had a mean LAeq value of 68.3 dB, a 
standard deviation (SD) of 5.5 dB, and an interquartile range from 31.3 

to 103.9 dB. The mean LAeq varied slightly by dates, ranging from 67.3 
to 69.0 dB. 

3.2. Model results 

The performance of each model is shown in Table 4. Among the six 
machine learning models, five machine learning regression models 
showed better performance than the linear regression model, implying a 
complex nonlinear relationship between the predictor variables and the 
noise level. Among all the prediction models, the RF model performed 
the best, with a final R2 of 0.72 and an RMSE of 3.28 dB, indicating that 
72% of the data can be well explained with a deviation of 3.28 dB be-
tween the observed and true values. The KNN model also performed well 
with a final R2 of 0.66 and an RMSE below 3.5 dB. The DT (R2 = 0.52) 
and GB (R2 = 0.51) models had acceptable performances, with R2 above 
0.5. In contrast, the performance of AR model was poor with a final R2 of 
only 0.35. The SV and LR models performed the worst, with final R2 of 
only 0.32 even when all predictor variables were included. 

In the first step, only meteorological variables were included in the 
models, the R2s of each model were low and did not exceed 0.6. Espe-
cially, the R2s of SV (R2 = 0.01), LR (R2 = 0.01) and SV models (R2 =

0.06) were all below 0.1. The KNN (R2 = 0.55) and RF models (R2 =

0.51) performed relatively well. Further inclusion of street form vari-
ables improved the model accuracy, and the RMSE of all models 
decreased. The RF (R2 = 0.66) and KNN models (R2 = 0.61) performed 
well with final R2s both above 0.6, while the LR and SV models still 
performed the worst (R2 = 0.29). After including the traffic composition 
variables, except for the LR, SV and AR models, most models performed 
at acceptable levels, with final R2s above 0.5. 

Considering that the KNN model cannot calculate the relative con-
tributions of the predictor variables, Table 5 showed the relative con-
tributions of the top 10 predictor variables from the RF and DT models 
among the best 3 models. Overall, the street form variables had the 
highest contribution, exceeding 41% in the RF model and 39% in the DT 
model. The contribution of traffic composition variables exceeded 10% 
in both the RF and DT models. The contribution of meteorological var-
iables was weak in both models. Humidity and temperature were the 
only two meteorological variables in the top 10 contribution list, with 
contributing the same of 6% to both the RF and GB models. 

Although the predictor variables contribute differently to traffic 
noise in the two models, there were some similarities among the vari-
ables. The street form variables of distance to major road ranked first in 
both models, contributing 23% and 22% to the RF and GB models, 
respectively. The maximum view index of cars in the last 3 s, maximum 

Fig. 4. Descriptions of the e-bike carrying professional monitoring devices.  
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view index of buses in the last 3 s and the tree view index ranked among 
the top five in both models, contributing 5%, 5% and 5% to the RF model 
and 5%, 5% and 4% to the GB model, respectively. The contribution of 
the remaining variables did not significantly vary, with none of them 
exceeding 5%. 

Among them, the distance to the major-major intersection, distance 
to the major-secondary intersection, distance to the branch-branch 
intersection, humidity and temperature were among the top ten in 
both models, but with slightly differences at the contribution level. The 
distance to the major-secondary intersection contributed 4% in the RF 
model and 3% in the GB model. The distance to the branch-branch 
intersection contributed 4% in the GB model and 3% in the RF model. 

The distance to the major-major intersection, humidity and temperature 
all contributed the same 3% to both models. In addition, some of these 
predictors were only among the top ten for one model. Sky view index 
contributed 3% in the RF model, while land area of shopping mall within 
the 200-m contributed 3% in the GB model. 

3.3. Prediction maps 

The optimal RF model was employed to predict traffic noise levels at 
both point and street scales along mobile monitoring routes. These 
predictions were combined with noise data from stationary sampling 
points to generate traffic noise maps over a period of nine days (see 
Figs. 5 and 6). It is important to note that the noise values at each co-
ordinate point in the map corresponded to the LAeq values measured at 
the time of data collection, with a reference time of 1 s. Significant 
differences in noise levels were observed between different streets on the 
same day. For example, on August 17th, the mean LAeq value on streets 
was 69.3 dB, with values ranging from 64.9 to 73.7 dB. In addition, 
higher LAeq values were recorded on major and secondary roads and at 
intersections with high traffic volumes. Car honking at intersections also 
contributing to elevated traffic noise levels. 

4. Discussion 

To our knowledge, this is one of the earliest efforts combining mobile 
and stationary monitoring methods to collect noise data. In this study, a 
new noise monitoring method called Rotating Mobile Monitoring 
(RMM) method was proposed, and the noise data at random locations 
and intersections of approximate 54.79 km of roads in Beijing over a 
period of 9 days was collected. During the RMM campaign, both video 
data and meteorological data were collected. Microscopic traffic 
composition variables were extracted from the video data, land use and 
street form variables were measured from the built environment data 
and video data, all of which were considered as predictor variables for 
the noise prediction model, along with meteorological variables. Deep 
learning methods were deployed to construct our prediction models and 
to capture the complex nonlinear relationships between noise level and 
these variables at each second. 

This study demonstrates the superiority of RMM, which can acquire 
accurate noise data over a large geographical area in a short period of 
time using less human labor. Compared to stationary monitoring (Mio-
duszewski et al., 2011; Zambon et al., 2018), RMM can collect traffic 
noise data at more locations (152 points in this study) with more spatial 
heterogeneity. The total area of our study is 22.15 km2, which covers a 
wide mixture of different land uses, including commercial and business 
district, universities, residential communities, parks and roads at each 
grade. Compared to mobile monitoring (Quintero et al., 2021; Quintero 
et al., 2019), RMM is capable of acquiring relatively time-continuous 
noise data covering different traffic conditions, including transitions 
from few to many vehicles. More importantly, RMM does not need to 

Table 3 
Descriptive statistics for noise levels and sampling parameters.  

Date Sample Minimum 
LAeq (db) 

Maximum 
LAeq (db) 

Average 
LAeq (db) 

Std 
Error 

Number of 
stationary sampling 
sites 

Maximum 
sampling time (s) 

Minimum 
sampling time (s) 

Average 
sampling time 
(s) 

July 13, 2022 2173 31.3 91.3 69.0 5.4 57 299 7 50.7 
July 29, 2022 1841 52 98.3 67.7 5.7 46 113 10 42.1 
August 1, 2022, 

July 13, 2022 
2099 52 88.6 68.8 5.7 55 171 6 43.1 

August 2, 2022 1803 49.2 103.9 69.3 5.7 51 288 12 47.4 
August 5, 2022 1845 51.8 101.8 68.9 5.3 53 148 9 45.1 
August 8, 2022 2178 53.5 97.5 67.5 5.1 53 122 14 46.8 
August 12, 2022 2270 53.1 91.4 67.8 5.5 68 157 7 40.9 
August 17, 2022 2108 47.8 102.7 68.2 5.7 61 145 10 40.8 
August 19, 2022 1896 52 90.7 67.7 5.4 63 190 8 40.8 
Total 18,213 31.3 103.9 68.3 5.5 152 299 6 44.0  

Table 4 
R2 and RMSE of noise prediction models based on three types of variables.  

Model covariates Meteorological 
variables 

+ Street form 
variables 

+ Traffic 
composition 
variables  

R2 RMSE R2 RMSE R2 RMSE 
Random forest (RF) 

regression 
0.51 3.85 0.66 3.21 0.72 3.28 

K-Nearest Neighbors (KNN) 
regression 

0.55 3.70 0.61 3.18 0.66 3.43 

Decision tree (DT) 
regression 

0.40 4.26 0.42 4.18 0.52 4.89 

Gradient Boosting (GB) 
regression 

0.22 4.86 0.49 3.93 0.51 3.84 

Adaboost regression (AR) 0.06 5.33 0.34 4.49 0.35 4.51 
Support vector (SV) 

regression 
0.01 5.48 0.29 4.62 0.32 4.53 

Linear regression (LR) 0.01 5.46 0.29 4.63 0.32 4.50  

Table 5 
Relative contribution (RC) of predictor variables (Top 10) in top 2 models.  

Model 1 
Random forest regression 

RC Model 2 
Decision tree regression 

RC 

Distance to the major road 23% Distance to the major road 22% 
Tree view index 5% Maximum view index of cars 5% 
Maximum view index of 

cars 
5% Maximum view index of buses 5% 

Maximum view index of 
buses 

5% Distance to the branch-branch 
intersection 

4% 

Distance to the major- 
secondary intersection 

4% Tree view index 4% 

Sky view index 3% Humidity 3% 
Humidity 3% Distance to the major- major 

intersection 
3% 

Distance to the branch- 
branch intersection 

3% Land area of shopping mall within 
the 200-m Euclidean buffers 

3% 

Distance to the major- 
major intersection 

3% Distance to the major- secondary 
intersection 

3% 

Temperature 3% Temperature 3%  
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consider the problem of noise levels being affected by movement, so it 
can cover a large geographical area in a short period of time. In our 
study, only one researcher was needed to collect traffic noise data for 55 
km of road in less than 3 h. In the future, this method can be extended to 
other urban areas of Beijing. 

In addition to noise data, video data and meteorological data were 
also collected in the RMM campaign, which could be used to measure 
predictor variables for microscopic traffic composition, built environ-
ment and meteorology. After examining the complex relationship be-
tween the predictor variables and the noise level, LAeq could be 
predicted for all the mobile routes, since the data used to measure the 
predictor variables covered the entire study area. Deep learning 
methods were applied to the construction of noise prediction models and 
the random forest model had the best performance with a final R2 of 
0.72 and an RMSE of 3.28 dB. In contrast, the linear regression model 
had the worst performance, with an R2 of only 0.32, demonstrating the 
existence of a complex nonlinear relationship between the predictor 
variables and the noise level. In addition, the accuracy of our prediction 

models was improved compared to most previous studies. For example, 
Thakre et al. (2020) developed a noise prediction model using multiple 
regression analysis with a final R2 of 0.64–0.65. The accuracy of our 
model was also improved compared to several studies that used deep 
learning models to predict traffic noise. Fallah-Shorshani et al. (2018) 
used land use regression to predict traffic noise with an R2 of 0.44–0.64. 
Yin et al. (2020) developed several models to predict noise on 16 routes, 
including the neural network model (R2: 0.44–0.75 (mean 0.61), RMSE: 
3.34–7.93 dB (mean 4.89 dB)), the random forest model (R2: 0.48–0.78 
(mean 0.65), RMSE: 3.54–5.80 dB (mean 4.76 dB)) and the extreme 
gradient boosting model (R2: 0.54–0.88 (mean 0.71), RMSE: 2.54–6.44 
dB (mean 4.54 dB)). 

Distance to the major road contributed the most to the prediction 
model in our study, which, to some extent, can reflect the level of traffic 
volume. Although this study is able to identify microscopic traffic vol-
umes from video data, the videos were taken from the perspective of the 
human eye and cannot capture all vehicles on wider roads, so distance to 
the major road serves as a supplementary role. 

Fig. 5. Traffic noise distribution of the coordinate points for nine days.  
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Most previous studies have confirmed that macroscopic traffic vol-
ume variable (average traffic flow within a certain time) is the strongest 
contributor in the model (Yin et al., 2020; Lee et al., 2014). However, 
microscopic traffic composition characteristics can reflect the actual 
traffic situation at a certain time and place, which corresponds to LAeq 
measured at 1-s intervals, and are more meaningful for highly dynamic 
traffic noise prediction. Our study confirms the crucial contribution of 
microscopic traffic composition characteristics in noise prediction 
models. In particular, the proportion of views of cars and buses is more 
important than their numbers, clarifying that the proportion repre-
senting the distance to the noise source is more important than the 
quantity. The prediction accuracy of RF model (R2) was improved 6% 
after considering the traffic composition variables. Although Luca et al. 
(2021) and Sun et al. (2022) both considered using traffic composition 
characteristics that extracted from image data to predict traffic noise, 
they relied on image data provided by fixed location cameras, resulting 
in low spatial heterogeneity of noise sampling points. In addition, 
image-based deep learning models for traffic composition information 

extraction requires a large amount of labeled data for model training in a 
supervised manner (Luca et al., 2021). This study used the publicly 
available YOLOv7 model to process enormous image data for automated 
measurement of traffic composition variables, and the accuracy of this 
method has been demonstrated in the original studies (Wang et al., 
2022). Meanwhile, the indispensable role played by image data in pre-
dicting noise levels should also be emphasized. In addition to micro-
scopic traffic composition variables, the tree view and sky view indices 
with high relative contributions are also measured by image data. It can 
be concluded that LAeq with 1-s range can be accurately predicted by 
taking photographs on urban roads and knowing where the photographs 
were taken. 

In summary, this study realizes the possibility of predicting highly 
dynamic traffic noise using RMM and machine learning methods, and 
generating high spatial resolution traffic noise maps from trained 
random forest model, which has a wide range of application scenarios in 
epidemiological studies, both to assess potential adverse health effects of 
individual-level traffic noise exposure and to account for noise as a 

Fig. 6. Traffic noise distribution of street segments in nine days.  
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confounding effect in other traffic-related exposures such as air pollu-
tion (Yin et al., 2020). Although strategic noise maps have been used as a 
noise management tool in many European countries since the intro-
duction of the Environmental Noise Directive. These strategic noise 
maps have some disadvantages: the prediction accuracy in shielded or 
quiet areas is not very high, and most importantly they did not consider 
dynamic traffic elements that could affect the acoustic environment 
(Wei et al., 2016). Our research makes it possible to monitor highly 
dynamic urban traffic noise and generate high spatial and temporal 
resolution noise maps using thousands of cameras within cities, so that 
streets and areas of severe noise pollution that require management 
control could be easily identified. Besides, since Google Street Views 
already cover most urban areas worldwide, these commercial street 
views can be used to map noise pollution for large geographical areas 
and identify inequalities in noise exposure for urban resident (Anguelov 
et al., 2010). 

This study has several limitations that need to be acknowledged. 
Firstly, to ensure the safety of the data collectors and improve the 
collection efficiency, we chose to collect data only during off-peak hours 
from 12:00 to 16:00, which may not fully represent the noise pattern 
during peak traffic hours. Future studies will need to investigate the 
noise pattern during peak hours to provide a more comprehensive un-
derstanding of traffic noise. Second, traffic conditions such as airports 
were not addressed in the study area. Third, this study only collected 
data in Beijing, and the transferability of the model is unknown. 
Experimental validation in other cities will be conducted in the future. 
Finally, as previous studies have demonstrated that spatial variation in 
noise is more important than temporal variation, our study focused on 
various noise sources but was unable to capture well the temporal trend. 
However, it gave us insight that in the future, the use of stabilization 
time (ST) (Brambilla et al., 2022) can be employed to analyze and 
determine a statistically representative sample of the urban acoustic 
environment, thereby enhancing the representativeness of the noise map 
over time. 

5. Conclusion 

In this study, a new traffic noise monitoring method, Rotating Mobile 
Monitoring method (RMM), is proposed, and it is demonstrated that this 
method can combine the advantages of stationary and mobile moni-
toring methods to achieve the collection of high-precision large-scale 
noise data with high spatial and temporal resolution but with less labor 
and time. A total of 18,213 LAeq samples at 1-s intervals were obtained 
from 152 stationary locations during the nine-day RMM campaigns. For 
predicting LAeq, the Random Forest model performed best (R2 = 0.72, 
RMSE = 3.28 dB), followed by the K-Nearest Neighbors regression 
model (R2 = 0.66, RMSE = 3.43 dB), which was substantially more 
accurate than the linear regression model and demonstrated the com-
plex nonlinear relationship between predictor variables and traffic 
noise. In the RF models, distance to the major road, tree view index and 
the maximum view index of cars in the last 3 s are the three most 
important predictors of traffic noise, with a total contribution of 33%. 
Most importantly, our study confirms the important role of microscopic 
traffic composition variables in predicting traffic noise, which offers 
great possibilities for constructing highly dynamic noise maps. Also 
using our trained model, the images can be used to accurately predict 
traffic noise after knowing where the images were taken, which has 
important practical implications for noise management. 
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