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Abstract: Urban growth analysis and simulation have been recently conducted by cellular automata (CA) 

models based on self-organizing theory which differs from system dynamics models. This paper describes 

the Beijing urban development model (BUDEM) which adopts the CA approach to support urban planning 

and policy evaluation. BUDEM, as a spatio-temporal dynamic model for simulating urban growth in the Bei-

jing metropolitan area, is based on the urban growth theory and integrates logistic regression and 

MonoLoop to obtain the weights for the transition rule with multi-criteria evaluation configuration. Local sen-

sitivity analysis for all the parameters of BUDEM is also carried out to assess the model’s performances. 

The model is used to identify urban growth mechanisms in the various historical phases since 1986, to re-

trieve urban growth policies needed to implement the desired (planned) urban form in 2020, and to simulate 

urban growth scenarios until 2049 based on the urban form and parameter set in 2020. The model has been 

proved to be capable of analyzing historical urban growth mechanisms and predicting future urban growth 

for metropolitan areas in China. 
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Introduction 

Along with the prosperity of Beijing macro-economy, 
especially as a result of the Olympics, the future form 
of the Beijing metropolitan area needs to be analyzed 
in the post-Olympic games period in 2009, at the end 
of the urban master planning in 2020, and for the 100th 
anniversary of the founding of the P. R. China’s capital 
in 2049. Furthermore, long-term forecast of the urban 
form is essential for the next round of urban master 
planning. Comprehensive urban models have been de-
veloped to simulate urban systems for some major 

metropolitan areas, such as the London metropolitan 
area, the San Francisco Bay area, and the California 
area. However, there is no urban model for Beijing or 
most other cities in China.  

Urban models, which were developed in the early 
years of the twentieth century, have progressed from 
structural models to static models to dynamic models. 
Traditional urban models, based on differential equa-
tions or quasi dynamic equations, usually simulate the 
urban system at a macro level, so they cannot accu-
rately reflect the dynamic, self-organizing, or emerging 
characteristics of urban systems. The development of 
GIS and other complex adaptive models has led to ur-
ban models based on artificial life or discrete dynamics. 
In recent years, urban growth models have used the 
cellular automata (CA) approach which is based on 
self-organizing theory. The CA models are composed 
of a series of basic rules instead of strictly defined 
physics equations or functions. The discrete character 

 Received: 2008-10-16; revised: 2009-06-10 

* Supported by the National Natural Science Foundation of China
(No. 50678088) and the National Project of Scientific and Technical
Supporting Programs Funded by the Ministry of Science & Tech-
nology of China (No. 2006BAJ14B08) 

** To whom correspondence should be addressed. 
E-mail: longying1980@gmail.com; Tel: 86-10-88073660 



LONG Ying ( ) et al. Beijing Urban Development Model: Urban Growth … 783

is a key characteristic of the time and space and status 
in CA. CA has been adapted to simulate the emergence, 
self-organizing, and chaos phenomena in urban    
systems.  

CA is now a practical tool for simulating urban 
growth, which is the main field using CA. Tobler[1]

initially simulated urban expansion in the Great Lakes 
region of the United States. Couclelis[2-5] claimed that 
CA with simple rules can be applied to generate com-
plex urban forms in a virtual city, with great potential 
to simulate urban growth. White and Engelen[6] applied 
CA to urban planning and White and Engelen[7] simu-
lated the land use patterns in Cincinnati, Ohio, United 
States. Clark and Gaydos[8] developed the SLEUTH 
model to simulate long-term urban growth in the San 
Francisco Bay area and the Washington-Baltimore area 
in the United States, like some of the earliest applica-
tions of CA which simulate urban growth in the real 
cities. Batty et al.[9-16] conducted several studies using 
fractal and CA to study urban formation and expansion. 
Xie[17]  simulated the land use changes in Buffalo, NY, 
United States. Wu and Webster[18-20] used the 
multi-criteria evaluation (MCE) method to find the 
status transition rules in CA and applied the model for 
urban expansion simulations of Guangzhou, China.  

In China, Li and Yeh[21-27] used various intelligent 
methods to identify the CA transition rules, with a con-
strained CA model to simulate sustainable urban 
growth in the Pearl River Delta and analyzed the un-
certainty of CA. Others have used CA to simulate ur-
ban growth in Haikou[28], Wuhan[29], Fuzhou[30],
Xi’an[31], Northern China[32], and part of the Beijing 
metropolitan area[33]. Thus, there have been many ap-
plications of CA to simulate urban growth in China. 
However, there are no studies using CA to simulate 
urban growth in the Beijing metropolitan area.  

The Beijing urban development model (BUDEM) 
was developed to support urban planning and policy 
evaluation. This spatio-temporal dynamic model simu-
lates urban growth for the Beijing metropolitan area 
using the CA approach. The model was developed for 
the Beijing metropolitan municipal government and 
planning committee with an area of 16 410 km2 and 
with a spatial resolution of 500 m, including computer 
simulations using CA of the Beijing metropolitan area. 
The BUDEM urban form simulation platform was spe-
cially developed for Beijing urban planning in a 
mega-city. BUDEM integrates logistic regression and 

MonoLoop to identify the CA transition rule to realize 
the desired urban form. The model uses environmental 
constraints and urban planning conditions to reflect 
China’s urban development characteristics. Then it is 
used to simulate the planned urban form of Beijing in 
2020 and to predict the long-term unknown urban form 
of Beijing in 2049. Therefore, the paper presents a his-
torical analysis of the different phases of Beijing’s ur-
ban growth and model estimates for Beijing in 2020 
(BEIJING2020), and then predicts the Beijing form in 
2049 (BEIJING2049) based on the urban form and 
parameter set of Beijing in 2020.  

1  BUDEM CA-Based Urban  
Simulation Model 

1.1  Spatial factors selection 

Macro level urban growth research, which does not 
consider urban spatial distribution, regards the urban 
system as one whole entity. The driving forces for ur-
ban growth consist of population changes, economic 
changes, political structure, etc.[34]. However, we prefer 
the self-organizing process research within the urban 
system. Urban development is influenced by location 
and geographic conditions in a classical urban land use 
model. Alonso[35] pointed out that the distance to the 
urban center is the principal factor controlling the ur-
ban land use structure in his single center urban loca-
tion theory. The optimum land type will change ac-
cording to the distance to the urban center, which af-
fects the accessibility and transportation cost. In addi-
tion, Doxiadis, who founded human settlement science, 
concluded that the distances to the present urban center, 
to the main road, or to the natural landscape are the 
main forces for human settlement[36]. The Hedonic 
model provides a clearer framework, which assumes 
that commodity prices are determined by the total util-
ity of the different properties and depend on the num-
ber and composition of the commodity’s properties[37].
For example, Butler[38] held that residential prices are 
affected by location, architectural structure, and 
neighborhood, and that the prices reflect the total pref-
erences of the consumer. Urban development is related 
to residential prices and its probability reflects devel-
oper’s preferences for the lot or block. Therefore, the 
spatial variables in the CA were chosen as shown in 
Table 1 based on Hedonic theory and the possibility of 
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acquiring the data. Column “Dataset” stands for the 
corresponding dataset from which the spatial variable 

is obtained with detailed descriptions of the datasets in 
Section 1.4.  

Table 1  Spatial variables in the CA 

Type of variables Name Value Description Dataset 

isrural 0, 1
Whether the cell is rural built-up land 

in the previous iteration
LANDUSE, LANDi*

Self-status
isagri 0, 1 

Whether the cell is agricultural land 
in the previous iteration

LANDUSE

d_tam 0 Minimum distance to Tian’anmen Square
d_vcity 0 Minimum distance to important new city
d_city 0 Minimum distance to new city
d_vtown 0 Minimum distance to important town
d_town 0 Minimum distance to town
d_river 0 Minimum distance to river
d_road 0 Minimum distance to road

LOCATION
Location 

d_bdtown 0 Minimum distance to town boundaries BOUNDARY 
planning 0, 1 Whether planned as urban built-up PLANNING
con_f 0, 1 Whether in the forbidden zone CONSTRAINT Government
landresource 1-8 (integer) Land suitability classified for agriculture LANDRESOURCE 

Neighbor neighbor 0-0.125 Neighborhood development intensity LANDi

* Dataset LANDi is the generated land use layer when CA iterating 

1.2  Conceptual model 

The model’s premises are as follows: First, the urban 
system is a complex self-adaptive system that can be 
simulated with a bottom-up method. Second, the urban 
growth forces can be classified into promoting and 
restraining types. They can also be divided into market 
forces and government forces. Third, the historical de-
velopment trends will continue in future development. 
Finally, various urban growth scenarios can be gener-
ated with variations of the baseline scenario.  

With these assumptions, the conceptual CA model is 
shown in Eq. (1). The CA lattices based on the Beijing 
metropolitan area, which has an area of 16 410 km2,
are adjustable based on the simulation purpose. This 
study used cell sizes of 500 m×500 m for a total 
65 628 cells in the lattices. The CA cell states are 0 or 
1, where 1 stands for urban built-up land and 0 stands 
for non urban built-up land. MCE was used as the CA 
transition rule with a 3×3 Moore used as the CA 
neighborhood with 8 adjacent cells. The discrete time 
in the CA model was based on the total number of ur-
ban built-up cells.  
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the cell status at ij of time t+1, f is the transition rule. 
The cell status in each iteration is influenced by the 

self status variables in the previous iteration, global 
variables, and the local variable listed in Table 1. The 
self status variables include isrural and isagri, which 
indicate whether cell i, j’s status at time t is rural 
built-up land or agricultural land. Development control 
of the rural built-up land and the agricultural land is a 
sensitive question in China, so both of these two self 
status variables are important in the model. The global 
variables included location type and government type 
variables, which are static through all the iterations. 
Variable neighbor is the only local variable in the CA 
which changes during the iterations. The model simu-
lates the transition from urban non built-up to urban 
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built-up, but not the reverse process. Urban redevel-
opment is also not considered.  

In addition to the CA model, a macro-restraining 
sub-model was also developed using the urban devel-
opment time-serial data as described in Section 1.4 to 
predict the total amount of urban built-up each year. 
The total is the core parameter for controlling the 
number of CA iterations when the model terminates. 
The model also calculates the corresponding real time 
(Year) for each iteration as the CA discrete time.  

Urban economists use regression methods, such as 
logistic regressions or multi-logit models to calculate 
the urban development probability. These methods can 
identify the relationships between land use change and 
locational characteristics. However, the self-organizing 
process of land development is not considered. Spon-
taneous growth and self-organizing growth are inte-
grated in the current CA model, which is a key advan-
tage of this model for simulating urban growth.  

1.3  Status transition rule 

The transition rule, as the core CA component, is an 
important topic in CA research. Various methods have 
been developed to determine the transition rule, such 
as MCE, grey theory, principal component analysis, 
artificial neural networks, genetic algorithms, rough 
sets, and case-based reasoning. This analysis uses 
MCE to establish the CA status transition rule.  

Landis and Zhang[39-42] developed CUF and CUF-2 
to predict urban forms as typical applications of MCE 
for urban growth modeling. CUF and CUF-2 use the 
developing land use (DLU) as the basic modeling unit, 
instead of a CA cell. Wu[20] determined the MCE-based 
transition rules for the CA urban growth simulation 
model based on  

c g ,con( suitable)t t t
ij i jP P s         (2) 

Yeh and Li’s constrained CA model used a similar 
transition rule[25]. In Eq. (2), Pg is the urban growth 
suitability, which is the global probability calculated 
by the MCE method.  is the neighborhood effect, con 
is the environmental restraining effect, and Pc

t is the 
joint probability. Wu and Webster[18,19] used the ana-
lytic hierarchy process (AHP) method to obtain the 
weights of spatial variables in the MCE, while Wu[20]

used logistic regression to obtain the weights based on 
historical development data. Wu found that the MCE 

method is a convenient way to obtain the CA transition 
rules, but that the weights for the spatial variables in 
the MCE are difficult to be accurately and comprehen-
sively determined. The AHP method is not repeatable 
and overly subjective and it cannot identify historical 
urban development trends. In the AHP method for ob-
taining the MCE weights, the neighborhood and envi-
ronmental effects are separately multiplied to get Pg,
instead of being included in the logistic regression pro-
cedure. As a result, the logistic regression does not 
include all the relevant factors and the regression 
weights cannot entirely explain some historic urban 
growth development trends.  

Clark and Gaydos[8] presented a rigorous calibration 
method. This method first generates simulation results 
with different parameter sets (nested loops). Then, 
each simulated result is matched with the observed 
form to calculate matching indexes (the r-squared fit 
between the actual and predicted number of urban pix-
els, edges in the images, separate clusters, and a modi-
fied Lee-Sallee shape index). The parameter set with 
the best matching index is then used to predict the fu-
ture urban form. Five parameters are considered in this 
model, with 6, 6, 6, 5, 7 values for each parameter, 
respectively. Consequently, 7560 parameter sets are 
generated for the model calibration with 252 h of cal-
culation time needed for the rigorous calibration proc-
ess. As the number of parameters increased, the cali-
bration time would increase exponentially. Our current 
model has 14 parameters. If each parameter had 6 val-
ues for testing with the same time cost for every loop 
as in the Clark and Gaydos’ model, the total calibration 
time would be about 300 000 years, even with a limita-
tion of only 6 choices for each parameter. Even though 
the Clark and Gaydos’ method can identify the best 
parameter set for the simulation, the time cost is not 
acceptable even by the most advanced workstation. 
Therefore, the methods of Wu[20] and Clark and Gay-
dos[8] were integrated to obtain the weights for the 
MCE formatted transition rule as Eq. (3).  
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In Eq. (3), t
jis  is the development suitability, w is 

the logistic regression coefficient, pg
t is the initial tran-

sition probability, pt
g,max is the maximum pg

t in iteration 
t, t

jip  is the final transition probability, thresholdp  is the 

urban growth threshold, RI is the random item,  is the 
random value varying from 0 to 1, k is the random in-
dex used to regulate RI, and  is the dispersion pa-
rameter ranging from 1 to 10, which indicates the rigid 
level of development. The larger indicates stricter 
development control and lower development probabil-
ity with the same suitability. Hence, the parameter 
greatly impacts the simulated urban form.  

All the spatial variables, except neighbor, are in-
cluded in the logistic regression equation, and the cor-
responding coefficients, weights w1-w13 in the MCE, 
can be obtained. In the regression analysis, the de-
pendent variable is either 0 or 1, since the land use 
change status is either “developed” or “undeveloped”. 
There are 13 spatial variables in the regression analysis 
(all except neighbor). The dependent variable is ob-
tained by algebra operation on LANDUSE datasets at 
the start and the end of the year. The sample tool in the 
ESRI ArcGIS was used to sample the dependant vari-
ables and independent variables for the logistic regres-
sion into a table, which were then analyzed in SPSS to 
obtain the w1-w13 coefficients.  

Then, the weight for the variable neighbor (wn
* ) was 

calculated using the sole parameter looping method 
(MonoLoop), instead of looping through all the pa-
rameter weights as in Clark and Gaydos[8]. Various wn

were calculated to find wn
* with the best matching    

index while keeping w1-w13 constant. Then, wn
* was 

obtained with w1-w13 input to the transition rule to 
simulate the urban growth. The goodness-of-fit (G), 
accuracy of the point-to-point comparisons, was used 
to assess the degree of matching between the simulated 
and observed urban forms. G has a maximum of 100%. 
This method combining logistic regression and 
MonoLoop greatly reduces model calibration time and 

is still able to identify historical urban growth trends.  
The RI in the transition rule allows development 

beyond what can be explained by the selected spatial 
variables, such as the leapfrog type development. The 
use of RI in the transition rule makes the simulated 
result more rational. A constant threshold thresholdp  is 

used instead of a static or random threshold to guaran-
tee the same development standards for urban devel-
opment in different phases. Variables isagri and isrural 
stand for the transition from agricultural land and rural 
built-up areas, which is a concern of the Beijing Mu-
nicipal Government.  

1.4  Dataset 

The input spatial data is classified into seven types, 
LANDUSE, PLANNING, CONSTRAINT, LAN-
DRESOURCE, LOCATION, BOUNDARY, as well as 
UrbanInfoSeries. All the spatial data was converted 
into the ESRI single band GRID format, using the 
same coordinate and projection system. The data de-
scriptive statistics is listed in Table 2.  

(1) LANDUSE: The most complete dataset includes 
landuse for 1947, 1964, 1976, 1981, 1986, 1991, 1996, 
2001, and 2006. The data for 1947 was digitalized 
from a relief map, the data for 1964 was interpreted 
from a DISP aerial image, the data for 1976 and 1981 
was interpreted from MSS images, and the others were 
interpreted from TM images. LANDUSE is classified 
into six land use types, including urban built-up area, 
rural built-up area, agriculture area, forest area, wet-
land area, and vacant area. The variable landuse was 
derived from the LANDUSE dataset with 1 for urban 
built-up areas and 0 for other areas.  

(2) PLANNING: Five urban master plans for the 
Beijing metropolitan area were included for 1958, 
1973, 1982, 1993, and 2004, with the areas classified 
into urban built-up areas and non urban built-up   
areas[43]. The variable planning is derived from the 
PLANNING dataset.  

(3) CONSTRAINT: The data reflects the urban de-
velopment constraints derived from 110 spatial layers 
of natural resource protection and hazard prevention 
according to current laws, legislations, and standards 
of China. CONSTRAINT is zoned into the forbidden 
built-up areas, constrained built-up areas, and suitable 
built-up areas. The variable con_f stands for the for-
bidden built-up areas.  
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Table 2  Data descriptive statistics in the model (N=65 628)

Dataset Variable Minimum Maximum Mean Std. deviation 
landuse1986 1 6 4.32 1.02 
landuse1991 1 6 4.31 1.03 
landuse1996 1 6 4.27 1.10 
landuse2001 1 6 4.24 1.14 

LANDUSE

landuse2006 1 6 4.19 1.20 
planning1958 0 1 0.04 0.20 
planning1973 0 1 0.05 0.22 
planning1982 0 1 0.03 0.16 
planning1992 0 1 0.05 0.22 

PLANNING

planning2004 0 1 0.14 0.35 
CONSTRAINT con_f 0 1 0.44 0.50 
LANDRESOURCE landresource 1 8 3.92 1.66 

d_tam 0 129 711 57 737.08 26 952.19 
d_vcity 0 102 504 46 545.37 23 392.81 
d_city 0 78 824 24 801.90 14 730.19 
d_vtown 0 36 530 13 255.02 6968.38 
d_town 0 42 005 8286.05 5298.70 
d_river 0 14 230 3212.68 2416.59 
d_road1986 0 29 681 2514.47 3675.36 
d_road1991 0 29 954 2390.63 3577.05 
d_road1996 0 29 820 2341.07 3635.95 
d_road2001 0 24 000 1925.85 2494.29 

LOCATION

d_road2006 0 29 820 2306.49 3613.74 
BOUNDARY d_bdtown 0 7762 1239.24 1173.94 

(4) LANDRESOURCE: The data indicates the suit-
ability for agricultural use classified into eight types 
ranging from 1 to 8[44]. The variable landresource    
is derived from LANDRESOURCE with the same   
values.  

(5) LOCATION: The location indicates the mini-
mum distance to urban or town centers for various ad-
ministrative divisions, with d_road as the minimum 
distance to the road networks and d_river as the mini-
mum distance to the rivers. The location spatial vari-
ables were derived from LOCATION using the Dis-
tance/Straight Line command in the ESRI ArcGIS.  

(6) BOUNDARY: The boundaries include adminis-
trative, ring road, eco-zoning, and watershed bounda-
ries, with various transition rules used in different 
sub-areas. The variable d_bdtown was derived from 
the dataset.  

(7) UrbanInfoSeries: The data indicates population, 
environmental, economic, and social datasets in macro 
levels for the macro-restraint sub-model[45].

2  Parameter Estimates for Beijing 

The urban growth driving forces in different historical 
phases were acquired by the logistic regression for 
1947-1964, 1964-1976, 1976-1981, 1981-1986, 
1986-1991, 1991-1996, 1996-2001, and 2001-2006. In 
the logistic regression, the variables, d_tam, d_vcity, 
d_city, d_vtown, d_town, d_bdtown, landresource, and 
con_f, do not change while the variables, planning, 
d_road, isrural, isagri, and the dependent variable vary 
with the historical phase. The variable neighbor is not 
considered in the logistic regression. The results can 
then be used to compare the urban growth mechanisms 
in various phases. The regression results for 2001-2006 
are listed in Table 3, with an acceptable regression ac-
curacy of 88.5%. As shown in Table 3, the coefficient 
of d_river is the largest, and accordingly the develop-
ment probability will decrease by 0.024% with the   
increased distance of 1 m to the nearest river. The   
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variable d_road is positively correlated to the devel-
opment probability, but the coefficient is quite small, 
indicating that the urban growth along roads in this 
phase is not significant. The development probability 
of cells in the forbidden built-up zone is 65.9% lower 
than that of other areas, while a cell in the planned 
built-up area has a development probability of 36.7% 
higher than that of unplanned areas.  

Table 3  Variables in the logistic regression equation 
for 2001-2006 (B is the regression coefficient.) 

Name B Standard error p Exp(B)
isrural 3.284 309 0.321 0.000 26.691
isagri 4.376 267 0.157 0.000 79.541
d_tam 0.000 042 0.000 0.000 1.000 
d_vcity 0.000 018 0.000 0.002 1.000 
d_city 0.000 032 0.000 0.000 1.000 
d_vtown 0.000 019 0.000 0.050 1.000 
d_town 0.000 036 0.000 0.320 1.000 
d_river 0.000 224 0.000 0.000 1.000 
d_road2001 0.000 061 0.000 0.578 1.000 
d_bdtown 0.000 057 0.000 0.510 1.000 
planning2004 0.312 422 0.139 0.025 1.367 
con_f 1.076 304 0.143 0.000 0.341 
landresource 0.023 686 0.040 0.556 0.977 

The logistic regression coefficients for different his-
torical phases are listed in Table 4. The LANDUSE 
data before 1986 is still incomplete so the logistic re-
gressions were not conducted for data before 1986. 

Comparison of the dominant factors in the different 
phases shows that the urban growth mechanisms differ 
greatly with variations of the market and government 
roles in the different phases. 2001-2006 had more riv-
erside development followed by development in the 
central city, with little development along the road. 
1996-2001 had strong development along the roads 
followed by the new city development, with areas 
around the town growing more slowly. 1991-1996 and 
1986-1991 both had significant development along the 
roads.  

The results in Table 4 also show that the parameter 
of planning remained positive and reached a maximum 
in 1986-1991. The other phases all have the parameter 
of planning of about 0.4. Thus, in the first several years 
of the social market economy, urban planning played a 
leading role in urban growth. However, with the intro-
duction of the market mechanism into China, its role 
was partially replaced by market factors. The parame-
ter of con_f remained negative and decreased with 
time, indicating that the effect of ecological conserva-
tion and hazard prevention on the urban growth is in-
creasing with time. The parameter of landresource re-
mained positive but decreased with time, indicating 
less protection of cultivatable land. The parameter of 
d_bdtown was positive before 1996 and negative later, 
indicating that the restrictions of administrative 
boundaries are gradually decreasing in Beijing.  

Table 4  Logistic regression coefficients for various historical phases 

B
Name

2001-2006 1996-2001 1991-1996 1986-1991 
isrural 3.284 309 3.774 535 3.949 259 5.534 083 
isagri 4.376 267 3.279 759 1.802 018 0.156 322 
d_tam 0.000 042 0.000 049 0.000 054 0.000 012 
d_vcity 0.000 018 0.000 032 0.000 003 0.000 047 
d_city 0.000 032 0.000 094 0.000 034 0.000 028 
d_vtown 0.000 019 0.000 029 0.000 018 0.000 014 
d_town 0.000 036 0.000 129 0.000 023 0.000 021 
d_river 0.000 224 0.000 078 0.000 066 0.000 021 
d_road 0.000 061 0.000 734 0.000 365 0.001 232 
d_bdtown 0.000 057 0.000 463 0.000 001 0.000 182 
planning 0.312 422 0.459 742 0.416 635 1.302 933 
con_f 1.076 304 0.613 198 0.449 983 1.274 498 
landresource 0.023 686 0.140 539 0.131 834 0.350 835 
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3  Identifying Parameters for the 
Planned Form 

In 2004, the State Council of China approved the  
Beijing master plan from 2004 to 2020. The Beijing 
Municipal Planning Committee and the Beijing Mu-
nicipal Government are now concerned about how to 
realize the planned urban form (represented by variable 
planning2004 in dataset PLANNING) and how to pre-
dict the urban form from now until 2020. Accurate 
simulations of the future desired urban form cannot be 
based on the best parameter sets derived from differen-
tial equation or optimum theory methods. The 
nested-loop method cannot be used to determine the 
parameters. Therefore, the integrated logistic regres-
sion and MonoLoop method was used to obtain the 
needed parameter set for the transition rule of the de-
sired urban form.  

In the logistic regression for parameter identification, 
the dependent variable was calibrated via algebra op-
eration on the planning2004 and landuse2006 with w1-w13

then listed in Table 5 with the whole accuracy of 
96.8%. Table 5 shows that each independent variable is 
significant at the acceptable level.  

Table 5  Variables in the logistic regression equation 
for 2006-2020 

Name B Standard error p Exp(B)
isrural 6.886 21 0.311 0.000 978.683
isagri 6.971 87 0.212 0.000 1066.213
d_tam 0.000 10 0.000 0.000 1.000
d_vcity 0.000 03 0.000 0.000 1.000
d_city 0.000 10 0.000 0.000 1.000
d_vtown 0.000 28 0.000 0.000 1.000
d_town 0.000 11 0.000 0.000 1.000
d_river 0.000 52 0.000 0.000 0.999
d_road 0.000 96 0.000 0.000 1.001
d_bdtown 0.000 27 0.000 0.001 1.000
planning 8.770 71 0.270 0.000 6442.743
con_f 0.200 97 0.138 0.146 0.818
landresource 0.093 55 0.039 0.016 0.911

The logistic regression was then followed by the 
MonoLoop procedure using 27 values for wn which 
required 21.5 h for 2997 iterations. The relationship 
between G and wn is shown in Fig. 1 where G remains 
steady at around 97.6% for wn from 0 to 5, and de-
creases sharply to 93.0% for wn from 5 to 35, and then 

rises for wn larger than 35. For wn bigger than 35, the 
number of developed cells in the first iteration was too 
large which indicates too many neighborhood interac-
tions, exceeding the total final number of urban 
built-up cells, to complete the simulation. Therefore, 
wn was set to 4.598 08 to simulate BEIJING2020, with 
G around 97.6%, which is near the ideal maximum of 
98.9%. The ideal maximum was determined by the 
spatial relationship of planning2004 which had 9376 
urban built-up cells and the observed urban form of 
landuse2006 which had 5297 urban built-up cells. The 
overlay analysis of planning2004 and landuse2006 shows 
that 712 developed cells in the observed urban form of 
landuse2006 were not part of the planned form of plan-
ning2004. Hence, the maximum G should be (65 628
712)/65 628=98.92%.  

Fig. 1  Goodness-of-fit plot of the MonoLoop proce-
dure for BEIJING2020 

The weights w1-w13 obtained by the logistic regres-
sion and wn from MonoLoop were then input into the 
established transition rule to simulate the urban form 
of BEIJING2020 with 208 iterations and 6297 s of 
computation time. The simulated urban form shown in 
Fig. 2 has 10 104 developed cells. The current simu-
lated urban form and the planned form are quite similar. 
The simulated urban form for 2020 and the forms in 
various phases from now to 2020 can be used by urban 
planning organizations.  

Figure 3 with the simulations for BEIJING2020 
shows that the maximum G appears at iteration 117 
(G=97.75%), instead of at the last iteration, 208 
(G=97.57%). Iteration 117 corresponds to the year 
2019, which illustrates that the urban plan will be ac-
tually realized in 2019, rather than in 2020. Therefore, 
the Beijing Municipal Planning Committee should un-
dertake a new round of urban planning in 2019, begin-
ning far in advance, probably in 2015.  
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Fig. 2  Simulated urban form for BEIJING2020 (a) 
and its comparative result with planned form for the 
Beijing central metropolitan area (b) 

Fig. 3  Goodness-of-fit plot for the BEIJING2020 
simulation

The urban growth policies to achieve the planned 
urban form can be identified by comparing the logistic 

regression coefficients of BEIJING2020 with those of 
various historical phases. Comparison of the present 
policies with achieved results can show whether the 
present policies and historical ones are consistent. In 
condition of inconsistence, the achieved parameters of 
BEIJING2020 can be regarded as new regulations. For 
instance, comparison of the 2001-2006 coefficients and 
the achieved parameters suggests that the realization of 
the planned urban form requires more urban planning 
implementing intensity, with an emphasis on the urban 
growth along main roads and increased constructions 
of important towns. The comparison also demonstrates 
that the built-up forbidden areas are well protected in 
the planned scheme and do not need more regulations. 
The model is capable of generating other urban forms 
in 2020 by adjusting the obtained policies for BEI-
JING2020 to evaluate various spatial development 
policies advanced by the government.  

In contrast to the general CA model for urban 
growth, the MonoLoop process allows point to point 
validation of the CA, with the accuracy of the point to 
point comparison reaching 97.6%. G is the key con-
straint in the MonoLoop of BUDEM, which guarantees 
the highest model accuracy for the point to point com-
parison, illustrating the merits of the MonoLoop 
method. There are many other methods for validating 
the CA model, such as fractal indexes and spatial struc-
ture indexes. Here, the Moran I index (the degree of 
spatial autocorrelation) was also used to validate the 
BEIJING2020 simulation results. The Moran I was 
found to be 0.12 (Z = 31.1) for the planned form and 
equal to 0.16 (Z = 43.6) for the simulated form. Thus, 
both the simulated form and the planned form are 
comparatively concentrated, which is a characteristic 
of planned urban forms instead of natural growth, with 
the simulated form being more congregated than the 
planned one.  

4  Future Urban Form Prediction 
Based on the BEIJING2020  
Scenario

2020 is the final year of this round of the urban master 
plan drafted by the Beijing Municipal Planning Com-
mittee, while 2049 is the 100th anniversary of Beijing 
as the capital of P. R. China. Preparations for the   
next round of urban planning for Beijing will need 
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predictions of the urban form from 2020 to 2049, es-
pecially 2049. The prediction should forecast the total 
amount of urban built-up area and the locations of 
these built-up areas. 

The use of the planned urban form for 2020 will 
yield more accurate forecasts of the Beijing urban form 
in 2049 than the use of the observed urban form in 
2006, based on the assumption that the urban plan of 
BEIJING2020 is more likely. In China, land develop-
ment is strongly controlled by the government by 
means of the urban planning, so the urban planning can 
explain most of the urban development activities which 
will be located in areas planned for urban built-up. 
Therefore, long-term urban growth forecasts should 
use the planned urban form for an intermediate year to 
reduce the uncertainty of long-term forecasting. In 
some western countries, land use is more controlled by 
private owners and the urban development is less con-
trolled by the government than in China. Therefore, the 
present forecast of the urban form for 2049 in the pa-
per is based on the BEIJING2020 planned form.  

4.1  Sensitivity analysis 

To forecast urban form scenarios in 2049, the model 
parameters had to be adjusted, especially the weights 
of the spatial variables. Therefore, the parameter sensi-
tivity must be analyzed to better understand the influ-
ence of each parameter on the model output. Generally, 
the two sensitivity analysis methods analyze the pa-
rameter sensitivity to the status and objectives, or ana-
lyze the sensitivity of the status to the objective. The 
first sensitivity analysis method is used here to empha-
size the influence of the status transition rule on simu-
lating the status variables and objectives.  

The adjustable parameters in the model are w1-w13,
wn, , k, and thresholdp . The base parameter set (BPS) 
will use the same w1-w13 and wn as in the BEI-
JING2020 scenario with =3, k=20, thresholdp =0.99, 
and 10 iterations. The influence of each parameter will 
then be calculated by adjusting each parameter indi-
vidually in the simulations. Five indicators are used to 
describe the influence, including x (the number of cells 
that change), Save (the average ijs  in all the cells), 
Pg,ave (the average gp  in all the cells), Pave  (the av-
erage ijp  in all the cells), and G. The sensitivity 
analysis has three steps:  

(1) Simulations with BPS are used to calculate each 

indicator’s value ,BPSmw , where m=1,2,3,4,5 for the 

five indicators.  
(2) Each parameter n in BPS is individually multi-

plied by 0.8 while holding the other parameters con-
stant to get each indicator’s value ,m nw , where 
n=1,…,17 for the 17 parameters.  

(3) Calculate the sensitivity of parameter n to the in-

dicator m: ,
,

,BPS

1m n
m n

m

w
U

w
. The sensitivity analysis 

results are listed in Table 6.  

Table 6  Sensitivity analysis results 

Parameter ,x nU
ave ,S nU

g,ave ,P nU
ave ,P nU ,G nU SUM

0.018 0.000 0.005 0.321 0.003 0.347
k 0.001 0.000 0.000 0.001 0.000 0.002

pthreshold 0.171 0.004 0.088 0.031 0.013 0.308
wisrural 0.006 0.004 0.013 0.001 0.001 0.024
wisagri 0.088 0.031 0.103 0.030 0.012 0.265
wd_tam 0.040 0.108 0.138 0.095 0.005 0.385
wd_vcity 0.005 0.022 0.029 0.022 0.001 0.078
wd_city 0.033 0.047 0.075 0.052 0.004 0.212

wd_vtown 0.054 0.067 0.163 0.141 0.007 0.433
wd_town 0.018 0.017 0.042 0.030 0.002 0.110
wd_river 0.023 0.031 0.049 0.036 0.003 0.141
wd_road 0.004 0.041 0.019 0.013 0.001 0.078

wd_bdtown 0.005 0.006 0.008 0.006 0.001 0.026
wplanning 0.146 0.019 0.210 0.166 0.020 0.562
wcon_f 0.002 0.002 0.003 0.002 0.000 0.009

wlandresource 0.005 0.007 0.010 0.008 0.001 0.031
wneighbor 0.013 0.011 0.112 0.100 0.002 0.238
SUM 0.633 0.418 1.068 1.055 0.076  

The results in Table 6 show that the weight for plan-
ning is the most sensitive, followed by the weight of 
d_vtown, with k being the least sensitive. Regarding 
the indicators, Pg,ave is the most sensitive, while G is 
the least sensitive. For indicator x, thresholdp  is the most 
sensitive, followed by the weight for planning. For 
indicator G, planning is the most sensitive and then 

thresholdp . The sensitivity analysis then gives a basis for 
evaluating the model’s uncertainties. The input and 
output relationships could be better understood by 
tracking the trends with the iteration number. For ex-
ample d /dx t , aved /dP t , and d /dG t  could be plotted 
for each iteration for analysis.   

4.2  BEIJING2049  

The predicted total urban built-up in the Beijing   
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metropolitan area in 2049 was estimated using Eq. (4).  
( )dy a b x c              (4) 

where a=2344 km2 (total planned urban built-up area 
in 2020), b=30 km2/a, c=2020, x is the forecast year, 
and y is the forecast urban built-up area (km2). d is 
used to adjust the urban built-up developing speed.  

After forecasting the total urban built-up area, the 
CA is used to simulate the layout of urban built-up     
areas. The transition rule indicates the impact of the 
corresponding urban growth policy (0 indicates the 
policy is not considered). The spatial variables also 
indicate urban growth policies, for example, the spatial 
distribution of con_f indicates for the extent of pro-
tected zones set by the policy. Thus, different urban 
growth scenarios for BEIJING2049 can be simulated 
by adjusting the weights or the variable spatial distri-
butions. The possible scenarios can be urban sprawl, 
grape-clusters, sustainable development, center city 
focused, town focused, riverside development, road-
side development, agricultural land protection, rural 
built-up control, etc. The Moron I index, agricultural 
land encroachment, forbidden built-up area encroach-
ment, and rural built-up area can all be used to assess 
different scenarios to identify the effects of different 
policies. In this paper only the urban growth scenario 
with the same trends as BEIJING2020 is considered 
(d=1), with the same parameter set as in BEIJING2020. 
The simulated result is shown in Fig. 4, which shows 
that the urban growth in 2049 includes some forbidden 
areas with urban sprawl. Thus, the urban growth poli-
cies from 2020 to 2049 must be adjusted to generate a 
more sustainable urban form to avoid such problems.  

Fig. 4  Simulated urban form for BEIJING2049 

5  Conclusions 

This paper presents a CA urban growth analysis and 
simulation model, BUDEM, for the Beijing metropoli-
tan area to analyze and simulate future urban form. The 
urban growth analysis and simulation platform based 
on an extensive database can identify urban growth 
mechanisms in various historical phases. A sensitivity 
analysis is used to evaluate the effects of the various 
model parameters on future urban growth predictions. 
Moreover, logistic regression was integrated with 
MonoLoop to derive the transition rule for the desired 
form of BEIJING2020. The weights were compared 
with historical weights to evaluate the effect of urban 
planning policies. The urban form until 2049 was also 
simulated to show that the CA can be applied to evalu-
ate urban planning influences on urban growth and 
predict future urban growth.  

Further work will use the model to analyze other re-
lated urban planning management policies by simulat-
ing urban growth. Updated BUDEM will be developed 
to simulate urban density effects and competing land 
use in parcel scale. Meanwhile, an agent-based module 
employing the discrete choice model will be added to 
simulate urban agents for various activities based on 
different urban policy scenarios.  
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